
 ExCalcEdit

Enrich your application with an easy-to-use edit control that supports arithmetic operations.
Get results on the fly. The result is displayed as the user types the expression. The control
handles double constants and arithmetic operations like +(addition), - (subtraction), / (
division), or * (multiply). To enforce a priority, you can use parentheses (). The control is
fully written in C++ using ATL and STL. The control is compatible with languages like VB,
VB.NET, VBA, C++, C#, VFP, Access, HTML, and so on. The control doesn't require
additional files or libraries like MFC, VB runtime, or else.

Features include:

Standard or Complex Arithmetic operations
Single or Multiple-Lines support
Ability to define expressions using variables
Total, SubTotal, Count and SubCount aggregate functions support
Prefixes, Comments support
Read-Only / Locked Text support
Highly customizable format to display the results
and more

Ž ExCalcEdit is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AppearanceEnum
Specifies the control's appearance. Use the Appearance property to specify the control's
appearance.

Name Value Description
None2 0 No border
Flat 1 Flat border
Sunken 2 The border has sunken border.
Raised 3 The border has raised border.
Etched 4 Etched border
Bump 5 Bump border

constants CalcTypeEnum
The CalcTypeEnum type indicates the operation the control supports. The CalcType
property specifies the type of the control. The CalcTypeEnum type supports the following
values:

Name Value Description
exCalcStandard 0 Allows only arithmetic operations.
exCalcIncludeAll -1 Allows all operations, operators and functions.

constants PictureDisplayEnum
Specifies how a picture object is displayed.

Name Value Description
exUpperLeft 0 Aligns the picture to the upper left corner.
exUpperCenter 1 Centers the picture on the upper edge.
exUpperRight 2 Aligns the picture to the upper right corner.

exMiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

exMiddleCenter 17 Puts the picture on the center of the source.

exMiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

exLowerLeft 32 Aligns the picture to the lower left corner.
exLowerCenter 33 Centers the picture on the lower edge.
exLowerRight 34 Aligns the picture to the lower right corner.
exTile 48 Tiles the picture on the source.
exStretch 49 The picture is resized to fit the source.

CalcEdit object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {0D4EE794-3E13-4226-81F9-499EE6EDCCF7}. The object's program identifier is: "Exontrol.CalcEdit".
The /COM object module is: "ExCalcEdit.dll"

The eXCalcEdit is an easy-to-use edit control that supports arithmetic operations. The
Exontrol's eXCalcEdit control supports the following properties and methods:

Name Description
AddDecimalSep Specifies an additional decimal separator.

AddWildFormat Formats the line based on the giving wild characters
expression.

AllowComments Specifies the HTML caption that starts the comment of the
line. If empty, no comments are allowed.

AllowCount Specifies the keyword that makes the control to display
the count all lines being counted in a Total group.

AllowFormatInvalidOnTyping Specifies whether the FormatInvalid property is applied on
the current line, while typing into the control.

AllowPrefixes Specifies the HTML caption that ends the prefix of the line.
If empty, no prefixes are allowed.

AllowSubCount Specifies the keyword that makes the control to display
the subcounts.

AllowSubTotal Specifies the keyword that makes the control to display
the subtotals.

AllowTotal Specifies the keyword that makes the control to display
the sum/total of all lines.

AllowUndoRedo Specifies whether the control allows undo/redo actions.

AllowVariables Specifies the expression (no HTML) that defines the
equal operator, so you can define variables.

Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

BackColorLockedLine Retrieves or sets a value that indicates the line's
background color when it is locked.

BackColorSubTotal Specifies the background color to show the SubTotal lines.
BackColorTotal Specifies the background color to show the Total line.

CalcType Specifies the type of operations the control support.
CanRedo Determines if the redo queue contains any actions.
CanUndo Determines whether the last edit operation can be undone.
CaretLine Indicates the line that displays the caret.

CaretPos Retrieves or sets a value that indicates the position of the
caret in the line.

ClearWildFormats Clears the wild characters expressions collection into a
sensitive control.

Count Counts the lines in the control.

DeleteWildFormat Deletes an entry from the wild characters expressions
collection.

DrawGridLines Returns or sets a value that determines whether lines are
drawn between rows, or unpopulated areas.

Enabled Enables or disables the control.
EvaluateSel Specifies whether the control evaluates the selection.
ExecuteTemplate Executes a template and returns the result.
Export Exports the control's content as text, including the results.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.

ForeColorLockedLine Retrieves or sets a value that indicates the line's
foreground color when it is locked.

FormatABC Formats the A,B,C values based on the giving expression
and returns the result.

FormatCountResult Specifies the HTML format to display the result of a Count
line.

FormatInvalid Specifies the HTML format to show invalid lines.

FormatLocal
Indicates the expression that defines the formatted value
being replaced in FormatResult properties, when %l% is
found.

FormatNumbers Specifies the HTML format that's applied to numbers.
FormatResult Specifies the HTML format of the result.

FormatSubCountResult Specifies the HTML format to display the result of a
SubCount line.

Specifies the HTML format to display the result of a

FormatSubTotalResult SubTotal line.

FormatTotalResult Specifies the HTML format to display the result of a Total
line.

GridLineColor Specifies the grid line color.

HideSelection Specifies whether the selection in the control is hidden
when the control loses the focus.

hWnd Retrieves the control's window handle.
InsertLockedText Inserts locked text to the control.
InsertText Inserts text to control.
IsValid Specifies whether the expression is valid.

LineHeight Specifies an expression that determines the height of the
line within the editor.

Locked Determines whether a control can be edited.
Margin Defines the distance between text and inner border.
MultiLine Specifies whether the control accepts multiple lines.
Overtype Specifies whether the control is running in overtype mode.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Redo Redoes the next action in the control's redo queue.
Refresh Refreshes the control.
Result Retrieves the result.
SelBackColor Specifies the selection's background color.
SelForeColor Specifies the selection's foreground color.
SelLength Returns or sets the number of characters selected.

SelStart
Returns or sets the starting point of text selected;
indicates the position of the insertion point if no text is
selected.

SelText Returns or sets the string containing the currently selected
text.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

Text Specifies the control's text.
TextLine Specifies the line based on its index.
Undo Call this function to undo the last edit-control operation.
UseTabKey Specifies whether the control uses the TAB key.
Variable Indicates the value of the specified variable.
Version Retrieves the control's version.

property CalcEdit.AddDecimalSep as String
Specifies an additional decimal separator.

Type Description

String A String expression that defines the additional decimal
separator.

By default, the AddDecimalSep property is "", which indicates that the dot character is the
default decimal separator. For instance, use the AddDecimalSep property on "," to define
the comma character as being your decimal separator.

method CalcEdit.AddWildFormat (Expression as String)
Formats the line based on the giving wild characters expression.

Type Description

Expression as String

A string expression that specifies the HTML format for a
wild characters expression. The wild characters supported
are '*' and '?'. Also the wild expression supports escaped
characters, AddWild("*") bolds the * character only,
not including the rest of the line, while AddWild("**")
bolds everything after a * character.

By default, the control has already the wild format defined as "<i>*=*</i>", which draws in
italics any line that includes the = (equal) character (define the variables). The
AllowVariables property specifies the expression (no HTML) that defines the equal
operator, so you can define variables. The AddWild method adds an expression that may
contain wild characters like '*' or '?'. Use the FormatNumbers property to specify the format
of the numbers in the control. The FormatResult property specifies the HTML format of the
result. The FormatInvalid property specifies the HTML format to show invalid lines. The
FormatTotalResult / FormatSubTotalResult property formats the Total / Sub-Total lines. The
FormatCountResult / FormatSubCountResult property specifies the HTML format of lines
that contains Count or SubCount aggregate function.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

The DeleteWildFormat deletes an entry from the wild characters expressions collection.
Use the ClearWildFormats method to clear the all wild characters expressions. The Refresh
method should be called after DeleteWild method was called to reflect the latest changes.

The following samples show how you can define new variables using the "is" keyword, and
highlight lines that includes it:

VBA (MS Access, Excell...)

With CalcEdit1
 .MultiLine = True
 .AllowVariables = "is"
 .ClearWildFormats
 .AddWildFormat "*is*"
 .Text = "A is 200"
 .InsertText ""
 .InsertText "B is A + 0.22"
 .InsertText "A + B"
 .InsertText "B is B * .19"
 .InsertText "A + B"
End With

VB6

With CalcEdit1
 .MultiLine = True
 .AllowVariables = "is"
 .ClearWildFormats
 .AddWildFormat "*is*"
 .Text = "A is 200"
 .InsertText ""
 .InsertText "B is A + 0.22"
 .InsertText "A + B"
 .InsertText "B is B * .19"
 .InsertText "A + B"
End With

VB.NET

With Excalcedit1
 .MultiLine = True

 .AllowVariables = "is"
 .ClearWildFormats()
 .AddWildFormat("*is*")
 .Text = "A is 200"
 .InsertText("")
 .InsertText("B is A + 0.22")
 .InsertText("A + B")
 .InsertText("B is B * .19")
 .InsertText("A + B")
End With

VB.NET for /COM

With AxCalcEdit1
 .MultiLine = True
 .AllowVariables = "is"
 .ClearWildFormats()
 .AddWildFormat("*is*")
 .Text = "A is 200"
 .InsertText("")
 .InsertText("B is A + 0.22")
 .InsertText("A + B")
 .InsertText("B is B * .19")
 .InsertText("A + B")
End With

C++

/*
 Copy and paste the following directives to your header file as
 it defines the namespace 'EXCALCEDITLib' for the library: 'ExCalcEdit 1.0 Control
Library'

 #import <ExCalcEdit.dll>
 using namespace EXCALCEDITLib;
*/
EXCALCEDITLib::ICalcEditPtr spCalcEdit1 = GetDlgItem(IDC_CALCEDIT1)-
>GetControlUnknown();

spCalcEdit1->PutMultiLine(VARIANT_TRUE);
spCalcEdit1->PutAllowVariables(L"is");
spCalcEdit1->ClearWildFormats();
spCalcEdit1->AddWildFormat(L"*is*");
spCalcEdit1->PutText(L"A is 200");
spCalcEdit1->InsertText(L"",vtMissing);
spCalcEdit1->InsertText(L"B is A + 0.22",vtMissing);
spCalcEdit1->InsertText(L"A + B",vtMissing);
spCalcEdit1->InsertText(L"B is B * .19",vtMissing);
spCalcEdit1->InsertText(L"A + B",vtMissing);

C++ Builder

CalcEdit1->MultiLine = true;
CalcEdit1->AllowVariables = L"is";
CalcEdit1->ClearWildFormats();
CalcEdit1->AddWildFormat(L"*is*");
CalcEdit1->Text = L"A is 200";
CalcEdit1->InsertText(L"",TNoParam());
CalcEdit1->InsertText(L"B is A + 0.22",TNoParam());
CalcEdit1->InsertText(L"A + B",TNoParam());
CalcEdit1->InsertText(L"B is B * .19",TNoParam());
CalcEdit1->InsertText(L"A + B",TNoParam());

C#

excalcedit1.MultiLine = true;
excalcedit1.AllowVariables = "is";
excalcedit1.ClearWildFormats();
excalcedit1.AddWildFormat("*is*");
excalcedit1.Text = "A is 200";
excalcedit1.InsertText("",null);
excalcedit1.InsertText("B is A + 0.22",null);
excalcedit1.InsertText("A + B",null);
excalcedit1.InsertText("B is B * .19",null);
excalcedit1.InsertText("A + B",null);

JScript/JavaScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:0D4EE794-3E13-4226-81F9-499EE6EDCCF7"
id="CalcEdit1"></OBJECT>

<SCRIPT LANGUAGE="JScript">
function Init()
{
 CalcEdit1.MultiLine = true;
 CalcEdit1.AllowVariables = "is";
 CalcEdit1.ClearWildFormats();
 CalcEdit1.AddWildFormat("*is*");
 CalcEdit1.Text = "A is 200";
 CalcEdit1.InsertText("",null);
 CalcEdit1.InsertText("B is A + 0.22",null);
 CalcEdit1.InsertText("A + B",null);
 CalcEdit1.InsertText("B is B * .19",null);
 CalcEdit1.InsertText("A + B",null);
}
</SCRIPT>
</BODY>

VBScript

<BODY onload="Init()">
<OBJECT CLASSID="clsid:0D4EE794-3E13-4226-81F9-499EE6EDCCF7"
id="CalcEdit1"></OBJECT>

<SCRIPT LANGUAGE="VBScript">
Function Init()
 With CalcEdit1
 .MultiLine = True
 .AllowVariables = "is"
 .ClearWildFormats

 .AddWildFormat "*is*"
 .Text = "A is 200"
 .InsertText ""
 .InsertText "B is A + 0.22"
 .InsertText "A + B"
 .InsertText "B is B * .19"
 .InsertText "A + B"
 End With
End Function
</SCRIPT>
</BODY>

C# for /COM

axCalcEdit1.MultiLine = true;
axCalcEdit1.AllowVariables = "is";
axCalcEdit1.ClearWildFormats();
axCalcEdit1.AddWildFormat("*is*");
axCalcEdit1.Text = "A is 200";
axCalcEdit1.InsertText("",null);
axCalcEdit1.InsertText("B is A + 0.22",null);
axCalcEdit1.InsertText("A + B",null);
axCalcEdit1.InsertText("B is B * .19",null);
axCalcEdit1.InsertText("A + B",null);

X++ (Dynamics Ax 2009)

public void init()
{
 ;

 super();

 excalcedit1.MultiLine(true);
 excalcedit1.AllowVariables("is");
 excalcedit1.ClearWildFormats();

 excalcedit1.AddWildFormat("*is*");
 excalcedit1.Text("A is 200");
 excalcedit1.InsertText("");
 excalcedit1.InsertText("B is A + 0.22");
 excalcedit1.InsertText("A + B");
 excalcedit1.InsertText("B is B * .19");
 excalcedit1.InsertText("A + B");
}

Delphi 8 (.NET only)

with AxCalcEdit1 do
begin
 MultiLine := True;
 AllowVariables := 'is';
 ClearWildFormats();
 AddWildFormat('*is*');
 Text := 'A is 200';
 InsertText('',Nil);
 InsertText('B is A + 0.22',Nil);
 InsertText('A + B',Nil);
 InsertText('B is B * .19',Nil);
 InsertText('A + B',Nil);
end

Delphi (standard)

with CalcEdit1 do
begin
 MultiLine := True;
 AllowVariables := 'is';
 ClearWildFormats();
 AddWildFormat('*is*');
 Text := 'A is 200';
 InsertText('',Null);
 InsertText('B is A + 0.22',Null);
 InsertText('A + B',Null);
 InsertText('B is B * .19',Null);

 InsertText('A + B',Null);
end

VFP

with thisform.CalcEdit1
 .MultiLine = .T.
 .AllowVariables = "is"
 .ClearWildFormats
 .AddWildFormat("*is*")
 .Text = "A is 200"
 .InsertText("")
 .InsertText("B is A + 0.22")
 .InsertText("A + B")
 .InsertText("B is B * .19")
 .InsertText("A + B")
endwith

dBASE Plus

local oCalcEdit

oCalcEdit = form.EXCALCEDITACTIVEXCONTROL1.nativeObject
oCalcEdit.MultiLine = true
oCalcEdit.AllowVariables = "is"
oCalcEdit.ClearWildFormats()
oCalcEdit.AddWildFormat("*is*")
oCalcEdit.Text = "A is 200"
oCalcEdit.InsertText("")
oCalcEdit.InsertText("B is A + 0.22")
oCalcEdit.InsertText("A + B")
oCalcEdit.InsertText("B is B * .19")
oCalcEdit.InsertText("A + B")

XBasic (Alpha Five)

Dim oCalcEdit as P

oCalcEdit = topparent:CONTROL_ACTIVEX1.activex
oCalcEdit.MultiLine = .t.
oCalcEdit.AllowVariables = "is"
oCalcEdit.ClearWildFormats()
oCalcEdit.AddWildFormat("*is*")
oCalcEdit.Text = "A is 200"
oCalcEdit.InsertText("")
oCalcEdit.InsertText("B is A + 0.22")
oCalcEdit.InsertText("A + B")
oCalcEdit.InsertText("B is B * .19")
oCalcEdit.InsertText("A + B")

Visual Objects

oDCOCX_Exontrol1:MultiLine := true
oDCOCX_Exontrol1:AllowVariables := "is"
oDCOCX_Exontrol1:ClearWildFormats()
oDCOCX_Exontrol1:AddWildFormat("*is*")
oDCOCX_Exontrol1:Text := "A is 200"
oDCOCX_Exontrol1:InsertText("",nil)
oDCOCX_Exontrol1:InsertText("B is A + 0.22",nil)
oDCOCX_Exontrol1:InsertText("A + B",nil)
oDCOCX_Exontrol1:InsertText("B is B * .19",nil)
oDCOCX_Exontrol1:InsertText("A + B",nil)

PowerBuilder

OleObject oCalcEdit

oCalcEdit = ole_1.Object
oCalcEdit.MultiLine = true
oCalcEdit.AllowVariables = "is"
oCalcEdit.ClearWildFormats()
oCalcEdit.AddWildFormat("*is*")

oCalcEdit.Text = "A is 200"
oCalcEdit.InsertText("")
oCalcEdit.InsertText("B is A + 0.22")
oCalcEdit.InsertText("A + B")
oCalcEdit.InsertText("B is B * .19")
oCalcEdit.InsertText("A + B")

Visual DataFlex

Procedure OnCreate
 Forward Send OnCreate
 Set ComMultiLine to True
 Set ComAllowVariables to "is"
 Send ComClearWildFormats
 Send ComAddWildFormat "*is*"
 Set ComText to "A is 200"
 Send ComInsertText "" Nothing
 Send ComInsertText "B is A + 0.22" Nothing
 Send ComInsertText "A + B" Nothing
 Send ComInsertText "B is B * .19" Nothing
 Send ComInsertText "A + B" Nothing
End_Procedure

XBase++

#include "AppEvent.ch"
#include "ActiveX.ch"

PROCEDURE Main
 LOCAL oForm
 LOCAL nEvent := 0, mp1 := NIL, mp2 := NIL, oXbp := NIL
 LOCAL oCalcEdit

 oForm := XbpDialog():new(AppDesktop())
 oForm:drawingArea:clipChildren := .T.
 oForm:create(,,{100,100}, {640,480},, .F.)
 oForm:close := {|| PostAppEvent(xbeP_Quit)}

 oCalcEdit := XbpActiveXControl():new(oForm:drawingArea)
 oCalcEdit:CLSID := "Exontrol.CalcEdit.1" /*{0D4EE794-3E13-4226-81F9-
499EE6EDCCF7}*/
 oCalcEdit:create(,, {10,60},{610,370})

 oCalcEdit:MultiLine := .T.
 oCalcEdit:AllowVariables := "is"
 oCalcEdit:ClearWildFormats()
 oCalcEdit:AddWildFormat("*is*")
 oCalcEdit:Text := "A is 200"
 oCalcEdit:InsertText("")
 oCalcEdit:InsertText("B is A + 0.22")
 oCalcEdit:InsertText("A + B")
 oCalcEdit:InsertText("B is B * .19")
 oCalcEdit:InsertText("A + B")

 oForm:Show()
 DO WHILE nEvent != xbeP_Quit
 nEvent := AppEvent(@mp1, @mp2, @oXbp)
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDDO
RETURN

property CalcEdit.AllowComments as String
Specifies the HTML caption that starts the comment of the line. If empty, no comments are
allowed.

Type Description

String A string expression that defines the HTML caption that
starts the comment of the line

By default, the AllowComments property is "", which indicates that the control supports no
comments. A line can have a prefix delimited by the AllowPrefixes property, and can have a
comment delimited by the AllowComments property. The prefix of the line and its comment
are never evaluated. In conclusion, the expression of the line starts after AllowPrefixes
property, and ends before AllowComments property. The FormatInvalid property specifies
the HTML format to show invalid lines. The AddWildFormat method formats the line based
on the giving wild characters expression.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, if:

the AllowComments property is "<fgcolor=008080>//</fgcolor>", it specifies that the
comments starts after // expression, and show in green.
the AllowPrefixes property is "<fgcolor=0000FF>:</fgcolor>", it specifies that
prefix of the line starts before : character, and it shows in bold and blue.

The following screen shot shows lines with/without comments and prefixes:

The

the black portion of each line is the expression being evaluated
the gray portion of each line indicates the result of evaluation the line
the blue portion of each line indicates its prefix, and it is not evaluated
the green portion of each line is its comment and it is not evaluated
if present, the red line indicates an invalid line

In case, the AllowComments property is empty, we get the following:

so only lines with or without a prefix are evaluated:

In case, the AllowPrefixes property is empty, we get the following:

so only lines with or without a comment are evaluated:

or if both are empty we get the following:

so only lines without a prefix and comment are evaluated:

property CalcEdit.AllowCount as String
Specifies the keyword that makes the control to display the count all lines being counted in
a Total group.

Type Description

String A String expression that defines the HTML expression that
indicates the keyword that computes the valid lines.

By default, the AllowCount property is "Count", which indicates that the Count
keyword specifies the count of all lines (valid) in the control. If the AllowCount property is "",
the control supports no Count aggregate function. The FormatCountResult / FormatLocal
property defines the format to display the result of a Count line. The AllowVariables
property specifies the expression (no HTML) that defines the equal operator, so you can
define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

The following screen show shows a control that displays a Count line:

property CalcEdit.AllowFormatInvalidOnTyping as Boolean
Specifies whether the FormatInvalid property is applied on the current line, while typing into
the control.

Type Description

Boolean
A Boolean expression that specifies whether the
FormatInvalid property is applied on the current line, while
typing into the control.

By default, the AllowFormatInvalidOnTyping property is True, which indicates that the
current line is highlighted as soon as the user types. The AllowFormatInvalidOnTyping
property specifies whether the FormatInvalid property is applied on the current line, while
typing into the control. By default, the FormatInvalid property is "<fgcolor=FF0000><s>
</s></fgcolor>", which indicates that invalid lines are shown in red as showing in the
following screen shot. If the FormatInvalid property is "", the control does not highlight the
invalid lines.

An invalid line is not evaluated, and so no result is being shown. The FormatResult property
specifies the HTML format of the result. The FormatTotalResult / FormatSubTotalResult
property formats the Total / Sub-Total lines. The FormatCountResult /
FormatSubCountResult property specifies the HTML format of lines that contains Count or
SubCount aggregate function.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

property CalcEdit.AllowPrefixes as String
Specifies the HTML caption that ends the prefix of the line. If empty, no prefixes are
allowed.

Type Description

String A string expression that defines the HTML caption that
ends the prefix of the line

By default, the AllowPrefixes property is "", which indicates that the control supports no
prefixes. A line can have a prefix delimited by the AllowPrefixes property, and can have a
comment delimited by the AllowComments property. The prefix of the line and its comment
are never evaluated. In conclusion, the expression of the line starts after AllowPrefixes
property, and ends before AllowComments property. The FormatInvalid property specifies
the HTML format to show invalid lines. The AddWildFormat method formats the line based
on the giving wild characters expression.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, if:

the AllowComments property is "<fgcolor=008080>//</fgcolor>", it specifies that the
comments starts after // expression, and show in green.
the AllowPrefixes property is "<fgcolor=0000FF>:</fgcolor>", it specifies that
prefix of the line starts before : character, and it shows in bold and blue.

The following screen shot shows lines with/without comments and prefixes:

The

the black portion of each line is the expression being evaluated
the gray portion of each line indicates the result of evaluation the line
the blue portion of each line indicates its prefix, and it is not evaluated
the green portion of each line is its comment and it is not evaluated
if present, the red line indicates an invalid line

In case, the AllowComments property is empty, we get the following:

so only lines with or without a prefix are evaluated:

In case, the AllowPrefixes property is empty, we get the following:

so only lines with or without a comment are evaluated:

or if both are empty we get the following:

so only lines without a prefix and comment are evaluated:

property CalcEdit.AllowSubCount as String
Specifies the keyword that makes the control to display the subcounts.

Type Description

String
A String expression that defines the HTML expression that
indicates the keyword that computes all previously valid
lines.

By default, the AllowSubCount property is "<fgcolor=808080>SubCount
</fgcolor>", which indicates that the SubCount keyword specifies the count of all lines
(valid) in the control. If the AllowSubCount property is "", the control supports no SubCount
aggregate function. The FormatSubCountResult / FormatLocal property defines the format
to display the result of a SubCount line. The AllowVariables property specifies the
expression (no HTML) that defines the equal operator, so you can define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

The following screen show shows a control that displays a Count line:

property CalcEdit.AllowSubTotal as String
Specifies the keyword that makes the control to display the subtotals.

Type Description

String A String expression that defines the HTML expression that
indicates the keyword that computes the sub-total of lines.

By default, the AllowSubTotal property is "<fgcolor=808080>SubTotal</fgcolor>",
which indicates that the SubTotal keyword specifies the sub-total of previously lines in the
control. If the AllowSubTotal property is "", the control supports no SubTotal aggregate
function. The FormatSubTotalResult / FormatLocal property defines the format to display
the result of a Total line. The BackColorSubTotalLine property specifies the background
color to show the SubTotal line. The AllowVariables property specifies the expression (no
HTML) that defines the equal operator, so you can define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

The following screen show shows a control that displays SubTotal lines:

property CalcEdit.AllowTotal as String
Specifies the keyword that makes the control to display the sum/total of all lines.

Type Description

String A String expression that defines the HTML expression that
indicates the keyword that computes the total of lines.

By default, the AllowTotal property is "Total", which indicates that the Total
keyword specifies the total of all lines in the control. if the AllowTotal property is "", the
control supports no Total aggregate function. The FormatTotalResult / FormatLocal property
defines the format to display the result of a Total line. The BackColorTotalLine property
specifies the background color to show the Total line. The AllowVariables property specifies
the expression (no HTML) that defines the equal operator, so you can define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

The following screen show shows a control that displays a Total line:

property CalcEdit.AllowUndoRedo as Boolean
Specifies whether the control allows undo/redo actions.

Type Description

Boolean A boolean expression that indicates whether the control
allows undo/redo actions.

The control supports multi levels undo/redo support. The CTRL + Z reverses the last editing
action, The CTRL + Y restores the previously undone action. Use the CanUndo property to
determine by code whether an undo operation is available. Use the CanRedo property to
determine by code whether a redo operation is available. Use the Redo method to redo the
next action in the control's redo queue. Use the Undo method to undo the last edit-control
operation.

property CalcEdit.AllowVariables as String
Specifies the expression (no HTML) that defines the equal operator, so you can define
variables.

Type Description

String
A String expression that defines the expression (no HTML
) that defines the equal operator, so you can define
variables.

By default, the AllowVariables property is "=" (equal character), which indicates that a line
can be divided in parts as var = expression, which indicates defining the var variable. The
AddWildFormat method formats the line based on the giving wild characters expression. By
default, the control has already the wild format defined as "<i>*=*</i>", which draws in
italics any line that includes the = (equal) character (define the variables). If the
AllowVariables property is "", the control does not support defining any variable. The
Variable property indicates the value of the specified variable. By default, the control
supports variables such as Total and Count, which defines the Total of all valid lines, and
count of them. The CalcType property specifies the type of operations the control supports.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

 The following screen shot defines a few variables:

property CalcEdit.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
control's appearance.

Use the Appearance property to hide the control's border. Use the BackColor property to
specify the control's background color. Use the ForeColor property to specify the control's
foreground color.

method CalcEdit.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub CaclEdit1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property CalcEdit.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that specifies the control's background
color.

Use the BackColor and ForeColor properties to define the control's background and
foreground colors. Use the Picture property to assign a picture on the control's background.

The following VB sample changes the control's background color:

With CalcEdit1
 .BackColor = ColorConstants.vbWhite
End With

The following C++ sample changes the control's background color:

m_calcEdit.SetBackColor(RGB(255,255,255));

The following VB.NET sample changes the control's background color:

With AxCalcEdit1
 .BackColor = Color.White
End With

The following C# sample changes the control's background color:

axCalcEdit1.BackColor = Color.White;

The following VFP sample changes the control's background color:

With thisform.CalcEdit1.Object
 .BackColor = RGB(255,255,255)
endwith

property CalcEdit.BackColorLockedLine as Color
Retrieves or sets a value that indicates the line's background color when it is locked.

Type Description

Color A Color expression that indicates the background color for
locked line.

The BackColorLockedLine property specifies the foreground color for locked lines. The
property has effect while it is not zero. The ForeColorLockedLine property specifies the
foreground color for locked lines. Use the InsertLockedText method inserts locked text/lines
to control.

The following screen shot shows the locked lines with a different back/foreground color:

property CalcEdit.BackColorSubTotal as Color
Specifies the background color to show the SubTotal lines.

Type Description

Color A Color expression that indicates the background color to
show the SubTotal line.

The BackColorSubTotalLine property specifies the background color to show the SubTotal
line. The AllowSubTotal property specifies the keyword that makes the control to display the
subtotal of all lines. The FormatSubTotalResult / FormatLocal property defines the format to
display the result of a SubTotal line. The AllowVariables property specifies the expression (
no HTML) that defines the equal operator, so you can define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

The following screen show shows a control that displays a Total line, with a different
background color:

property CalcEdit.BackColorTotal as Color
Specifies the background color to show the Total line.

Type Description

Color A Color expression that indicates the background color to
show the Total line.

The BackColorTotalLine property specifies the background color to show the Total line. The
AllowTotal property specifies the keyword that makes the control to display the sum/total of
all lines. The FormatTotalResult / FormatLocal property defines the format to display the
result of a Total line. The AllowVariables property specifies the expression (no HTML) that
defines the equal operator, so you can define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

The following screen show shows a control that displays a Total line, with a different
background color:

property CalcEdit.CalcType as CalcTypeEnum
Specifies the type of operations the control support.

Type Description

CalcTypeEnum A CalcTypeEnum expression that specifies the type of
operations the control supports.

By default, the CalcType property is exCalcStandard. For instance, you can use the
CalcType property on exCalcIncludeAll, to allow sqrt (square root function) to be used in
the control. Use the Text property to specify the control's text. The control's text is
evaluated using arithmetic operators. Use the Result property to get the result, if the
expression is valid. Use the IsValid property to specify whether the Text property is
syntactically correct, and may be evaluated. The AllowVariables property specifies the
expression (no HTML) that defines the equal operator, so you can define variables.

By default, the control supports the following aggregate functions:

AllowTotal property defines the Total keyword. The Total keyword, specifies the sum of
all lines that are not empty, valid and defines no variables.
AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables
until another SubTotal keyword is found.
AllowCount property defines the Count keyword. The Count keyword, counts all lines
that are not empty, valid and defines no variables.
AllowSubCount property defines the SubCount keyword. The SubCount keyword,
counts all previously lines that are not empty, valid, defines no variables until another
SubCount keyword is found.

If the CalcType property is exCalcStandard, the control supports all operations and
functions as listed bellow:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
+ (addition operator), priority 4
- (subtraction operator), priority 4

If the CalcType property is exCalcIncludeAll, the control supports all operations and
functions as listed bellow:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,

the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.

MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).

The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string

9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI

sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the

weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if

https://exontrol.com/expression.jsp

the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

property CalcEdit.CanRedo as Boolean
Determines if the redo queue contains any actions.

Type Description

Boolean A boolean expression that determines if the redo queue
contains any actions.

The control supports multi levels undo/redo support. The CTRL + Z reverses the last editing
action, The CTRL + Y restores the previously undone action. Use the CanRedo property to
determine by code whether a redo operation is available. Use the CanUndo property to
determine by code whether an undo operation is available. Use the Redo method to redo
the next action in the control's redo queue. Use the Undo method to undo the last edit-
control operation.

property CalcEdit.CanUndo as Boolean
Determines whether the last edit operation can be undone.

Type Description

Boolean A boolean expression that indicates whether the last edit
operation can be undone.

The control supports multi levels undo/redo support. The CTRL + Z reverses the last editing
action, The CTRL + Y restores the previously undone action. Use the CanUndo property to
determine by code whether an undo operation is available. Use the CanRedo property to
determine by code whether a redo operation is available. Use the Redo method to redo the
next action in the control's redo queue. Use the Undo method to undo the last edit-control
operation.

property CalcEdit.CaretLine as Long
Indicates the line that displays the caret.

Type Description

Long A long expression that defines the caret's line (index of
the line , 1 based).

Use the CaretLine and CaretPos properties to determine the caret's position. The CaretLine
property is 1-based. The index for the first line in the control's text is 1. Use the TextLine
property to get the line based on its index.

property CalcEdit.CaretPos as Long
Retrieves or sets a value that indicates the position of the caret in the line.

Type Description

Long A long expression that defines the position of the caret in
the current line (0 based).

Use the CaretLine and CaretPos properties to determine the caret's position. The CaretPos
property is 0-based. The first character in a line is 0. Use the TextLine property to get the
line based on its index.

method CalcEdit.ClearWildFormats ()
Clears the wild characters expressions collection into a sensitive control.

Type Description

Clears the wild characters expression into a sensitive control. Use the DeleteWildFormat
method to delete a specific wild characters expression

property CalcEdit.Count as Long
Counts the lines in the control.

Type Description

Long A long expression that specifies the number of lines in the
control.

The Count property gets the number of lines in the control. The MultiLine property specifies
whether the control accepts multiple lines. Use the InsertText method inserts text/lines to
control. Use the InsertLockedText method inserts locked text/lines to control. Use the
TextLine property to access the line based on its index. Use the Text property to access the
control's text. Use the InsertText method to insert lines to the control. Use the DeleteLine
method to delete a specific line.

The following VB sample prints the line in the control:

With CalcEdit1
 Dim i As Long
 For i = 1 To .Count
 Debug.Print .TextLine(i)
 Next
End With

The following C++ sample prints the line in the control:

for (long i = 1; i <= m_edit.GetCount(); i++)
 OutputDebugString(m_edit.GetTextLine(i));

The following VB.NET sample prints the line in the control:

With AxCalcEdit1
 Dim i As Integer
 For i = 1 To .Count
 Debug.WriteLine(.get_TextLine(i))
 Next
End With

The following C# sample prints the line in the control:

for (int i = 1; i <= axCalcEdit1.Count; i++)

 System.Diagnostics.Debug.WriteLine(axCalcEdit1.get_TextLine(i));

The following VFP sample prints the line in the control:

with thisform.CalcEdit1.Object
 local i
 for i = 1 to .Count
 wait window nowait .TextLine(i)
 next
endwith

method CalcEdit.DeleteWildFormat (Expression as String)
Deletes an entry from the wild characters expressions collection.

Type Description

Expression as String Deletes a wild characters expression being defined by
AddWildFormat method.

You have to be carefully when deleting a wild characters expression. For instance, let's say
that we defined the wild expression like follows:

With CalcEdit1
 .AddWild ("<fgcolor=FF0000>*;</fgcolor>")
End With

The sample highlights everything that ends with ';'. Use the following sample to delete the
wild characters expression:

With CalcEdit1
 .DeleteWild "*;"
 .Refresh
End With

Use the ClearWildFormats method to clear the all wild characters expressions. The Refresh
method should be called after DeleteWildFormat method was called to reflect the latest cha

property CalcEdit.DrawGridLines as Boolean
Returns or sets a value that determines whether lines are drawn between rows, or
unpopulated areas.

Type Description

Boolean A boolean expression that determines whether lines are
drawn between rows, or unpopulated areas.

By default, the DrawGridLines property is False, which indicates that the control shows no
grid lines. The LineHeight property specifies an expression that determines the height of the
line within the editor. The GridLineColor property specifies the color to show the grid lines.

The following screen shot shows how grid line colors are displayed:

property CalcEdit.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A color expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to disable the control. Use the Locked property to lock the
control. If the control is disabled the user cannot change the control's content. The
scrollbars are disabled. If the control's is disabled the control's caret is hidden too. If the
control is disabled, the control's content looks grayed.

property CalcEdit.EvaluateSel as Boolean
Specifies whether the control evaluates the selection.

Type Description

Boolean A Boolean expression that specifies whether the control
evaluates the selection.

By default, the EvaluateSel property is True, which indicates that the control evaluates the
selection, while it is changed. Set the EvaluateSel property on False, to prevent evaluating
the current selection.

method CalcEdit.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description
Variant A Varian expression that holds the result of the call.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string). For instance, you can use the EXPRINT.PrintExt =
CONTROL.ExecuteTemplate("me") to print the control's content.

For instance, the following sample retrieves the the handle of the first visible item:

Debug.Print CalcEdit1.ExecuteTemplate("Items.FirstVisibleItem()")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property CalcEdit.Export as String
Exports the control's content as text, including the results.

Type Description

String A String expression that includes the control's Text plus all
results.

The Export property exports each line of the control including its result. Use the Text
property to specify the control's text. The MultiLine property specifies whether the control
accepts multiple lines. Use the TextLine property to access the line based on its index. Use
the InsertText method inserts text/lines to control. Use the InsertLockedText method inserts
locked text/lines to control. Use the Result property to get the result, if the expression is
valid.

The following screen shot shows how the control is:

while the following shows what the Export gets:

100 * 1.5 [=150]
120 * 1.5 [=180]
130 * 1.5 [=195]
Total [=525]

property CalcEdit.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A font object that indicates the control's font.

Specifies the control's font. Use the ForeColor property to specify the control's foreground
color. Use the FormatNumbers property to specify the HTML format for numbers. use the
FormatResult property to specify the HTML format being used to display the result.

property CalcEdit.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that specifies the control's foreground
color.

Use the BackColor and ForeColor properties to define the control's background and
foreground colors. The ForeColor property has no effect if the control's Enabled property
is False. Use the Picture property to assign a picture on the control's background.

The following VB sample changes the control's foreground color:

With CalcEdit1
 .ForeColor = ColorConstants.vbBlack
End With

The following C++ sample changes the control's foreground color:

m_calcEdit.SetForeColor(RGB(0,0,0));

The following VB.NET sample changes the control's foreground color:

With AxCalcEdit1
 .ForeColor = Color.Black
End With

The following C# sample changes the control's foreground color:

axCalcEdit1.ForeColor = Color.Black;

The following VFP sample changes the control's foreground color:

With thisform.CalcEdit1.Object
 .ForeColor = RGB(0,0,0)
endwith

property CalcEdit.ForeColorLockedLine as Color
Retrieves or sets a value that indicates the line's foreground color when it is locked.

Type Description

Color A Color expression that indicates the foreground color for
locked line.

The ForeColorLockedLine property specifies the foreground color for locked lines. The
property has effect while it is not zero. The BackColorLockedLine property specifies the
foreground color for locked lines. Use the InsertLockedText method inserts locked text/lines
to control.

The following screen shot shows the locked lines with a different back/foreground color:

method CalcEdit.FormatABC (Expression as String, [A as Variant], [B as
Variant], [C as Variant])
Formats the A,B,C values based on the giving expression and returns the result.

Type Description
Expression as String A String that defines the expression to be evaluated.

A as Variant A VARIANT expression that indicates the value of the A
keyword.

B as Variant A VARIANT expression that indicates the value of the B
keyword.

C as Variant A VARIANT expression that indicates the value of the C
keyword.

Return Description

Variant A VARIANT expression that indicates the result of the
evaluation the CaclEdit.

The FormatABC method formats the A,B,C values based on the giving expression and
returns the result.

For instance:

"A + B + C", adds / concatenates the values of the A, B and C
"value MIN 0 MAX 99", limits the value between 0 and 99
"value format ``", formats the value with two decimals, according to the control's panel
setting
"date(`now`)" returns the current time as double

The FormatABC method supports the following keywords, constants, operators and
functions:

A or value keyword, indicates a variable A whose value is giving by the A parameter
B keyword, indicates a variable B whose value is giving by the B parameter
C keyword, indicates a variable C whose value is giving by the C parameter

This property/method supports predefined constants and operators/functions as described
here.

property CalcEdit.FormatCountResult as String
Specifies the HTML format to display the result of a Count line.

Type Description

String

A string expression that indicates the HTML format being
used to display the result for a Count line. The
FormatCountResult property should include %% sequence
that's replaced with the result. The FormatCountResult
supports also %l%, which is replaced by the evaluation of
the FormatLocal property using the current result.

By default, the FormatCountResult property is "(%%)". The AllowCount property
defines the Count keyword. The Count keyword, counts all lines that are not empty, valid
and defines no variables. Use the Result property to retrieve the result on specified line.
The TextLine property specifies the content of the giving line. Use the IsValid property to
specify whether the expression on giving line, is syntactically correct and may be evaluated.
The Result is not displayed, if the FormatCountResult property is empty. For instance, the
format "</r>%%" displays the result in the right side of the control.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, let's say we have the following sample:

With CalcEdit1
 .MultiLine = True
 .InsertText "100 * 200"
 .InsertText "300 * 400 * 1.5"
 .InsertText "200 + (400 * 1.5 + 300 / 1.19)"
End With

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080>[=%%]</fgcolor>" (default), FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "currency(value)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value format `2`"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value > 10000 ?
`<fgcolor=FF0000>` : ``) + (value format `2`)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value < 10000 ?
`<fgcolor=000000>` : ``) + (value format `2`)"

property CalcEdit.FormatInvalid as String
Specifies the HTML format to show invalid lines.

Type Description

String A String expression that defines the HTML format to show
invalid lines.

By default, the FormatInvalid property is "<fgcolor=FF0000><s> </s></fgcolor>", which
indicates that invalid lines are shown in red as showing in the following screen shot. If the
FormatInvalid property is "", the control does not highlight the invalid lines. The
AllowFormatInvalidOnTyping property specifies whether the FormatInvalid property is
applied on the current line, while typing into the control.

An invalid line is not evaluated, and so no result is being shown. The FormatResult property
specifies the HTML format of the result. The FormatTotalResult / FormatSubTotalResult
property formats the Total / Sub-Total lines. The FormatCountResult /
FormatSubCountResult property specifies the HTML format of lines that contains Count or
SubCount aggregate function.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

property CalcEdit.FormatLocal as String
Indicates the expression that defines the formatted value being replaced in FormatResult
properties, when %l% is found.

Type Description

String A String expression that defines the formula to display the
result when %l% is found in the FormatResult properties.

By default, the FormatLocal property is "", which indicates that the %l% displays the result
as indicated by the current locale (regional settings for numbers).

The FormatLocal property has effect for any of the following properties:

FormatResult property specifies the HTML format of the result of each line.
FormatTotalResult property specifies the HTML format to display the result of a Total
line.
FormatSubTotalResult property specifies the HTML format to display the result of a
SubTotal line.
FormatCountResult property specifies the HTML format to display the result of a Count
line.
FormatSubCountResult property specifies the HTML format to display the result of a
SubCount line.

if it contains a %l% sequence.

For instance,

if the FormatResult property is:

"<r> = %l%", displays the result of each line aligned to the right of the control
using the evaluation of the FormatLocal property

and the FormatLocal property is:

"currency(value)", gets the value(result) and formats it using current regional
setting including the current currency symbol

each line displays the result using current regional setting including the current currency
symbol.

For instance, let's say we have the following sample:

With CalcEdit1

 .MultiLine = True
 .InsertText "100 * 200"
 .InsertText "300 * 400 * 1.5"
 .InsertText "200 + (400 * 1.5 + 300 / 1.19)"
End With

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080>[=%%]</fgcolor>" (default), FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "currency(value)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value format `2`"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value > 10000 ?
`<fgcolor=FF0000>` : ``) + (value format `2`)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value < 10000 ?
`<fgcolor=000000>` : ``) + (value format `2`)"

The FormatLocal property supports the value keyword which indicates the result/number to
be formatted. The FormatLocal property supports the following functions, operators and
constants:

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5

mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for

restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified

dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal
16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".

dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the

following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the

rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the

"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

https://exontrol.com/expression.jsp

property CalcEdit.FormatNumbers as String
Specifies the HTML format that's applied to numbers.

Type Description

String A string expression that defines the HTML expression
being used when control displays numbers.

By default, the FormatNumbers property is "<fgcolor=0000FF> </fgcolor>". By default the
numbers get colored in blue. For instance, use the FormatNumbers property on "", and so
no numbers will be shown in colors. Use the FormatNumbers to define the appearance for
the numbers in the control. If the FormatNumbers property is empty no format is applied to
numbers in the control. The FormatResult property specifies the HTML format of the result.
The FormatInvalid property specifies the HTML format to show invalid lines. The
FormatTotalResult / FormatSubTotalResult property formats the Total / Sub-Total lines. The
FormatCountResult / FormatSubCountResult property specifies the HTML format of lines
that contains Count or SubCount aggregate function.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

property CalcEdit.FormatResult as String
Specifies the HTML format of the result.

Type Description

String

A string expression that indicates the HTML format being
used to display the result. The FormatResult property
should include %% sequence that's replaced with the
result. The FormatResult supports also %l%, which is
replaced by the evaluation of the FormatLocal property
using the current result.

By default, the FormatResult property is "<fgcolor=808080>[=%%]</fgcolor>". Use the
Result property to retrieve the result. The Text property indicates the control's expression.
Use the IsValid property to specify whether the expression is syntactically correct and may
be evaluated. The Result is not displayed, if the FormatResult property is empty. For
instance, the format "</r>%%" displays the result in the right side of the control.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, let's say we have the following sample:

With CalcEdit1
 .MultiLine = True
 .InsertText "100 * 200"
 .InsertText "300 * 400 * 1.5"
 .InsertText "200 + (400 * 1.5 + 300 / 1.19)"

End With

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080>[=%%]</fgcolor>" (default), FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "currency(value)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value format `2`"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value"

The following screen shot shows the control if the FormatResult property is "

<fgcolor=808080><r> = %l%", FormatLocal property is "(value > 10000 ?
`<fgcolor=FF0000>` : ``) + (value format `2`)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value < 10000 ?
`<fgcolor=000000>` : ``) + (value format `2`)"

property CalcEdit.FormatSubCountResult as String
Specifies the HTML format to display the result of a SubCount line.

Type Description

String

A string expression that indicates the HTML format being
used to display the result for a SubCount line. The
FormatSubCountResult property should include %%
sequence that's replaced with the result. The
FormatSubCountResult supports also %l%, which is
replaced by the evaluation of the FormatLocal property
using the current result.

By default, the FormatSubCountResult property is "<fgcolor=808080>(%%)</fgcolor>
". The AllowSubCount property defines the SubCount keyword. The SubCount
keyword, counts all previously lines that are not empty, valid, defines no variables until
another SubCount keyword is found. Use the Result property to retrieve the result on
specified line. The TextLine property specifies the content of the giving line. Use the IsValid
property to specify whether the expression on giving line, is syntactically correct and may
be evaluated. The Result is not displayed, if the FormatSubCountResult property is empty.
For instance, the format "</r>%%" displays the result in the right side of the control.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, let's say we have the following sample:

With CalcEdit1
 .MultiLine = True
 .InsertText "100 * 200"
 .InsertText "300 * 400 * 1.5"

 .InsertText "200 + (400 * 1.5 + 300 / 1.19)"
End With

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080>[=%%]</fgcolor>" (default), FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "currency(value)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value format `2`"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value > 10000 ?
`<fgcolor=FF0000>` : ``) + (value format `2`)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value < 10000 ?
`<fgcolor=000000>` : ``) + (value format `2`)"

property CalcEdit.FormatSubTotalResult as String
Specifies the HTML format to display the result of a SubTotal line.

Type Description

String

A string expression that indicates the HTML format being
used to display the result for a SubTotal line. The
FormatSubTotalResult property should include %%
sequence that's replaced with the result. The
FormatSubTotalResult supports also %l%, which is
replaced by the evaluation of the FormatLocal property
using the current result.

By default, the FormatSubTotalResult property is "<fgcolor=808080>[=%%]</fgcolor>
". The AllowSubTotal property defines the SubTotal keyword. The SubTotal keyword,
specifies the sum of all previously lines that are not empty, valid, defines no variables until
another SubTotal keyword is found. Use the Result property to retrieve the result on
specified line. The TextLine property specifies the content of the giving line. Use the IsValid
property to specify whether the expression on giving line, is syntactically correct and may
be evaluated. The Result is not displayed, if the FormatSubTotalResult property is empty.
For instance, the format "</r>%%" displays the result in the right side of the control.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, let's say we have the following sample:

With CalcEdit1
 .MultiLine = True

 .InsertText "100 * 200"
 .InsertText "300 * 400 * 1.5"
 .InsertText "200 + (400 * 1.5 + 300 / 1.19)"
End With

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080>[=%%]</fgcolor>" (default), FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "currency(value)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value format `2`"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value > 10000 ?
`<fgcolor=FF0000>` : ``) + (value format `2`)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value < 10000 ?
`<fgcolor=000000>` : ``) + (value format `2`)"

property CalcEdit.FormatTotalResult as String
Specifies the HTML format to display the result of a Total line.

Type Description

String

A string expression that indicates the HTML format being
used to display the result for a Total line. The
FormatTotalResult property should include %% sequence
that's replaced with the result. The FormatTotalResult
supports also %l%, which is replaced by the evaluation of
the FormatLocal property using the current result.

By default, the FormatTotalResult property is "[=%%]". The AllowTotal property
defines the Total keyword. The Total keyword, specifies the sum of all lines that are not
empty, valid and defines no variables. Use the Result property to retrieve the result on
specified line. The TextLine property specifies the content of the giving line. Use the IsValid
property to specify whether the expression on giving line, is syntactically correct and may
be evaluated. The Result is not displayed, if the FormatTotalResult property is empty. For
instance, the format "</r>%%" displays the result in the right side of the control.

The list of supported built-in HTML tags is:

bold
<i>italic</i>
<s>strikeout</s>
<u>underline</u>
<fgcolor=RRGGBB>fgcolor</fgcolor>
<bgcolor=RRGGBB>bgcolor</bgcolor>
text displays portions of text with a different font and/or
different size. For instance, the bit draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, bit displays the bit text using the current font, but with a different size.

For instance, let's say we have the following sample:

With CalcEdit1
 .MultiLine = True
 .InsertText "100 * 200"
 .InsertText "300 * 400 * 1.5"

 .InsertText "200 + (400 * 1.5 + 300 / 1.19)"
End With

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080>[=%%]</fgcolor>" (default), FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "" (default)

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "currency(value)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value format `2`"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "value"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value > 10000 ?
`<fgcolor=FF0000>` : ``) + (value format `2`)"

The following screen shot shows the control if the FormatResult property is "
<fgcolor=808080><r> = %l%", FormatLocal property is "(value < 10000 ?
`<fgcolor=000000>` : ``) + (value format `2`)"

property CalcEdit.GridLineColor as Color
Specifies the grid line color.

Type Description

Color A Color expression that specifies the color to show the
grid lines.

The GridLineColor property specifies the color to show the grid lines. The DrawGridLines
property specifies a value that determines whether lines are drawn between rows, or
unpopulated areas. The LineHeight property specifies an expression that determines the
height of the line within the editor.

The following screen shot shows how grid line colors are displayed:

property CalcEdit.HideSelection as Boolean
Specifies whether the selection in the control is hidden when the control loses the focus.

Type Description

Boolean A boolean expression that specifies whether the selection
is visible when the control loses the focus.

Use the HideSelection property to hide the selection when control loses the focus. Use the
SelForeColor and SelBackColor properties to define the colors used to paint the selection.
Use the SelStart, SelLength and SelText properties to access the selection. Set the
EvaluateSel property on False, to prevent evaluating the current selection

property CalcEdit.hWnd as Long
Retrieves the control's window handle.

Type Description
Long A long expression that indicates the window's handle.

The Microsoft Windows operating environment identifies each form in an application by
assigning it a handle, or hWnd. The hWnd property is used with Windows API calls. Many
Windows operating environment functions require the hWnd of the active window as an
argument. Because the value of this property can change while a program is running, you
cannot rely on its value (e.g., when stored in a variable)

method CalcEdit.InsertLockedText (Text as String, [Index as Variant])
Inserts locked text to the control.

Type Description
Text as String A string expression being inserted.

Index as Variant
A long expression that defines the index of line where the
text follows to be inserted. If missing or negative, the text
is added at the end of the control's text

Use the InsertLockedText method inserts locked text/lines to control. A locked line / text can
not be removed or deleted at runtime. For instance, you can add a total line, that user can
not edit or remove it. Use the InsertText method inserts text/lines to control. By default, the
MultiLine property is False, which indicates that the control can display a single line only.
Use the Text property to specify the control's text. The control's text is evaluated using
arithmetic operators. Use the Result property to get the result, if the expression is valid.
Use the IsValid property to specify whether the Text property is syntactically correct, and
may be evaluated. The result is displayed as the user types the expression. The control
fires the Change event when the user alters the expression. The BackColorLockedLine
property specifies the foreground color for locked lines. The ForeColorLockedLine property
specifies the foreground color for locked lines.

method CalcEdit.InsertText (Text as String, [Index as Variant])
Inserts text to control.

Type Description
Text as String A string expression being inserted.

Index as Variant
A long expression that defines the index of line where the
text follows to be inserted. If missing or negative, the text
is added at the end of the control's text.

Use the InsertText method inserts text/lines to control. By default, the MultiLine property is
False, which indicates that the control can display a single line only. Use the Text property to
specify the control's text. The control's text is evaluated using arithmetic operators. Use the
InsertLockedText method inserts locked text/lines to control. Use the Result property to get
the result, if the expression is valid. Use the IsValid property to specify whether the Text
property is syntactically correct, and may be evaluated. The result is displayed as the user
types the expression. The control fires the Change event when the user alters the
expression.

property CalcEdit.IsValid ([Line as Variant]) as Boolean
Specifies whether the expression is valid.

Type Description

Line as Variant
A Long expression that specifies the index of the line. 1
indicates the first line in the control, 2 indicates the second
and so on...

Boolean A boolean expression that indicates whether the
expression being evaluated is syntactically correct.

The Text property indicates the expression being evaluated. The Result property returns the
result of the evaluation, if the expression is valid, else 0 is returned. Use the IsValid property
to programmatically determine when the control's expression is valid or not. The control
does not display the result of the evaluation, if the expression is not valid. The TextLine
property specifies the text / expression on specified line.

property CalcEdit.LineHeight as String
Specifies an expression that determines the height of the line within the editor.

Type Description

String A String expression that determines the height of the line
within the editor.

By default, the LineHeight property is empty, which indicates that the control computes
automatically the line height based on the control's Font property. If the LineHeight's
expression is empty, invalid, evaluated to zero or negative, the line height is automatically
computed based on the control's Font property. You can use the LineHeight property to
increase or decrease the default's line height. The DrawGridLines property returns or sets
a value that determines whether lines are drawn between rows, or unpopulated areas.

For instance:

"value + 4*dpi", increases the default line height with 4 dots (4 pixels for 100% DPI
settings, 6 pixels for 150% DPI settings, and so on)
"value - 4*dpi", decreases the default line height with 4 dots (4 pixels for 100% DPI
settings, 6 pixels for 150% DPI settings, and so on)
"18", specifies that the line height is exactly 18 pixels.
"18*dpi", specifies that the line height is exactly 18 dots (18 pixels for 100% DPI
settings, 27 pixels for 150% DPI settings, and so on)

The value keyword in the LineHeight's expression indicates the default line height based on
the control's font.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

The constants are (DPI-Aware components):

dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is

https://exontrol.com/expression.jsp

100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

MIN (min operator), indicates the minimum value, so a MIN b returns the value of a, if
it is less than b, else it returns b. For instance, the expression value MIN 10 returns
always a value greater than 10.
MAX (max operator), indicates the maximum value, so a MAX b returns the value of
a, if it is greater than b, else it returns b. For instance, the expression value MAX 100
returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For
instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or
statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2
; c3 : expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it

is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. For instance type(%1) = 8
specifies the cells (on the column 1) that contains string values.

Here's few predefined types:

0 - empty (not initialized)
1 - null
2 - short
3 - long
4 - float
5 - double
6 - currency
7 - date
8 - string
9 - object
10 - error
11 - boolean
12 - variant
13 - any
14 - decimal

16 - char
17 - byte
18 - unsigned short
19 - unsigned long
20 - long on 64 bits
21 - unsigned long on 64 bites

str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#

Other known operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and

Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of
the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

Other known operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,

the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
startwith (binary operator) specifies whether a string starts with specified string (0 if
not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
endwith (binary operator) specifies whether a string ends with specified string (0 if
not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
contains (binary operator) specifies whether a string contains another specified string
(0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
left (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
right (binary operator) retrieves the right part of the string. For instance "Mihai" right 2
returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b, splits the a using the separator b, and returns an array. For instance, the
weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the weekday as
string. This operator can be used with the array.

Other known operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"
timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

property CalcEdit.Locked as Boolean
Determines whether a control can be edited.

Type Description

Boolean A boolean expression that determines whether the control
can be edited.

Use the Locked property to make the control read-only. The user can select or moves the
caret. Use the Enabled property to disable the control. If the control is disabled, the user
can't select or move the caret. Use the InsertLockedText method inserts locked text/lines to
control. The BackColorLockedLine property specifies the foreground color for locked lines.
The ForeColorLockedLine property specifies the foreground color for locked lines.

property CalcEdit.Margin as Long
Defines the distance between text and inner border.

Type Description

Long A long expression that defines the distance between text
and inner border.

By default, the Margin property is 2 pixels. Use the Margin property to define the distance
between text and inner border.

property CalcEdit.MultiLine as Boolean
Specifies whether the control accepts multiple lines.

Type Description

Boolean A Boolean expression that specifies whether the control
supports multiple lines.

By default, the MultiLine property is False, which indicates that the control can display a
single line only. Use the Text property to specify the control's text. The control's text is
evaluated using arithmetic operators. Use the TextLine property to access the line based on
its index. Use the InsertText method inserts text/lines to control. Use the InsertLockedText
method inserts locked text/lines to control. Use the Result property to get the result, if the
expression is valid. Use the IsValid property to specify whether the Text property is
syntactically correct, and may be evaluated. The result is displayed as the user types the
expression. The control fires the Change event when the user alters the expression. The
Count property gets the number of lines in the control.

property CalcEdit.Overtype as Boolean
Specifies whether the control is running in overtype mode.

Type Description

Boolean A boolean expression that indicates whether the control is
running the overtype/overstrike or insert mode.

By default, the Overtype property is False. The INSERT key toggles between
overtype/overstrike and insert mode. overtype/overstrike replaces existing characters,
insert adds new text where you start typing.

The following VB sample disables Overtype/Overstrike mode, when the user presses Insert
key:

Private Sub CalcEdit1_KeyDown(KeyCode As Integer, Shift As Integer)
 If (KeyCode = vbKeyInsert) Then
 KeyCode = 0
 End If
End Sub

property CalcEdit.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description

IPictureDisp A Picture object that specifies the control's background's
picture.

Use the Picture and PictureDisplay properties to put a picture on the control's background.
If the Picture property is empty no picture is displayed on the control's background. The VB
provides method like LoadPicture that loads a picture from a file. Use the BackColor and
ForeColor properties to define the control's background and foreground colors.

property CalcEdit.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that defines how the
control's picture is arranged on control's background.

Use the PictureDisplay property to arrange the control's picture on its background. The
PictureDisplay property has no effect if the control's Picture property is empty. Use the
BackColor property to specify the control's background color.

method CalcEdit.Redo ()
Redoes the next action in the control's redo queue.

Type Description

The control supports multi levels undo/redo support. The CTRL + Z reverses the last editing
action, The CTRL + Y restores the previously undone action. Use the Redo method to redo
the next action in the control's redo queue. Use the CanUndo property to determine by code
whether an undo operation is available. Use the CanRedo property to determine by code
whether a redo operation is available. Use the Undo method to undo the last edit-control
operation.

method CalcEdit.Refresh ()
Refreshes the control.

Type Description

property CalcEdit.Result ([Line as Variant]) as Double
Retrieves the result.

Type Description

Line as Variant
A Long expression that specifies the index of the line
where to request the result. 1 indicates the first line in the
control, 2 indicates the second and so on...

Double A Double expression that indicates the result of evaluation
of the text being typed.

The Result property retrieves the result of the Text expression. The control does not display
the result of the evaluation, if the entered expression is not valid, or the FormatResult
property is empty. Use the FormatResult property to specify how the result should be
displayed. The control fires the Change event when the user alters the expression.

property CalcEdit.SelBackColor as Color
Specifies the selection's background color.

Type Description

Color A color expression that specifies the selection's
background color.

Use the SelForeColor and SelBackColor properties to define the colors used to paint the
selection. Use the SelStart, SelLength and SelText properties to access the selection. Use
the HideSelection property to specify whether the control hides the selection when the
control loses the focus. The control fires the SelChange event when user changes the
selection.

property CalcEdit.SelForeColor as Color
Specifies the selection's foreground color.

Type Description

Color A color expression that specifies the selection's
foreground color.

Use the SelForeColor and SelBackColor properties to define the colors used to paint the
selection. Use the SelStart, SelLength and SelText properties to access the selection. Use
the HideSelection property to specify whether the control hides the selection when the
control loses the focus. The control fires the SelChange event when user changes the
selection.

property CalcEdit.SelLength as Long
Returns or sets the number of characters selected.

Type Description

Long A long expression that indicates the number of characters
selected.

Returns the number of characters the user selects in a text-entry area of a control, or
specifies the number of characters to select. Not available at design time; read-write at run
time. Use the SelText property to get the current selection. The SelStart indicates the
starting point of text selected. Set the EvaluateSel property on False, to prevent evaluating
the current selection

property CalcEdit.SelStart as Long
Returns or sets the starting point of text selected; indicates the position of the insertion
point if no text is selected.

Type Description

Long A long expression that indicates the starting point of text
selected.

Returns the starting point of a text selection made by the user in a text-entry area of a
control, or indicates the position of the insertion point if no text is selected. Also, specifies
the starting point of a text selection in a text-entry area of a control. Not available at design
time; read-write at run time. Use the SelLenght property to get the selection's length. Use
the SelText property to set or get the selected text. Set the EvaluateSel property on False,
to prevent evaluating the current selection

property CalcEdit.SelText as String
Returns or sets the string containing the currently selected text.

Type Description

String A string expression that indicates the current selection's
text.

Returns the text that the user selected in a text-entry area of a control, or returns an empty
string ("") if no characters are selected. Specifies the string containing the selected text.
Not available at design time; read-write at run time. The SelStart property returns or sets
the starting point of text selected; indicates the position of the insertion point if no text is
selected. The SelLength property determines the lenght of the selected text. The control
fires the SelChange event when the user changes the selection. Set the EvaluateSel
property on False, to prevent evaluating the current selection

The following VB sample displays the selected text when the user changes it:

Private Sub CalcCalcEdit1_SelChange()
 Debug.Print CalcEdit1.SelText
End Sub

The following C++ sample displays the selected text when the user changes it:

void OnSelChangeCalcEdit1()
{
 OutputDebugString(m_edit.GetSelText());
}

The following VB.NET sample displays the selected text when the user changes it:

Private Sub AxCalcCalcEdit1_SelChange(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxCalcEdit1.SelChange
 With AxCalcEdit1
 Debug.WriteLine(.SelText)
 End With
End Sub

The following C# sample displays the selected text when the user changes it:

private void axCalcCalcEdit1_SelChange(object sender, EventArgs e)

{
 System.Diagnostics.Debug.WriteLine(axCalcEdit1.SelText);
}

The following VFP sample displays the selected text when the user changes it:

*** ActiveX Control Event ***

with thisform.CalcEdit1
 wait window nowait .SelText
endwith

property CalcEdit.Template as String
Specifies the control's template.

Type Description
String A string expression that defines the control's template

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to get the result of executing a template script.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values

separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier. For instance, the following
code creates an ADOR.Recordset and pass it to the control using the DataSource
property:

The following sample loads the Orders table:

Dim rs
ColumnAutoResize = False
rs = CreateObject("ADOR.Recordset")
{
Open("Orders","Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program
Files\Exontrol\ExCalcEdit\Sample\SAMPLE.MDB", 3, 3)
}
DataSource = rs

property CalcEdit.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously. The TemplateDef and
TemplatePut are equivalents, excepts that the TemplateDef is a property, while the
TemplateDef is a method with a parameter.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"

 .Items.AddItem 0
 .Items.AddItem 1
 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)

Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.

Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method CalcEdit.TemplatePut (newVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

newVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut methiod has been added to allow programming languages such as dBASE
Plus to set control's properties with multiple parameters. It is known that programming
languages such as dBASE Plus or XBasic from AlphaFive, does not support setting a
property with multiple parameters. In other words, these programming languages does not
support something like Property(Parameters) = Value, so our controls provide an alternative
using the TemplateDef method. The first call of the TemplateDef should be a declaration
such as "Dim a,b" which means the next 2 calls of the TemplateDef defines the variables a
and b. The next call should be Template or ExecuteTemplate property which can use the
variable a and b being defined previously. The TemplateDef and TemplatePut are
equivalents, excepts that the TemplateDef is a property, while the TemplateDef is a method
with a parameter.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"

 .Items.AddItem 0
 .Items.AddItem 1
 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)

Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.

Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property CalcEdit.Text as String
Specifies the control's text.

Type Description

String A String expression that indicates the control's text (no
HTML included)

Use the Text property to specify the control's text. The control's text is evaluated using
arithmetic operators. The MultiLine property specifies whether the control accepts multiple
lines. Use the TextLine property to access the line based on its index. Use the InsertText
method inserts text/lines to control. Use the InsertLockedText method inserts locked
text/lines to control. Use the Result property to get the result, if the expression is valid. Use
the IsValid property to specify whether the Text property is syntactically correct, and may
be evaluated. The result is displayed as the user types the expression. The control handles
double constants and arithmetic operations like +(addition), - (subtraction), / (division),
or * (multiply). To enforce a priority, you can use parentheses (). The control fires the
Change event when the user alters the expression. Use the SelText property to retrieve the
selected text. Use the FormatNumbers property to specify the HTML format for the
numbers, and the FormatResult to specify the HTML format for the result being displayed
while editing. The CalcType property specifies the type of operations the control support.
The Export property exports each line of the control including its result.

property CalcEdit.TextLine(Index as Long) as String
Specifies the line based on its index.

Type Description

Index as Long A long expression that defines the index of line being
accessed. The Index is 1 based

String A string expression that defines the line's text (no HTML
included)

Use the TextLine property to access a particular line in the control's text. The MultiLine
property specifies whether the control accepts multiple lines. Use the InsertText method
inserts text/lines to control. Use the InsertLockedText method inserts locked text/lines to
control. Use the Text property to access the control's text when MultiLine property is False.
Use the DeleteLine method to delete a particular line. Passing an empty string to the
TextLine property doesn't remove the line. It just erases the line's content. The Count
property counts the number of lines in the control.

The following VB sample prints the line in the control:

With CalcEdit1
 Dim i As Long
 For i = 1 To .Count
 Debug.Print .TextLine(i)
 Next
End With

The following C++ sample prints the line in the control:

for (long i = 1; i <= m_edit.GetCount(); i++)
 OutputDebugString(m_edit.GetTextLine(i));

The following VB.NET sample prints the line in the control:

With AxCalcEdit1
 Dim i As Integer
 For i = 1 To .Count
 Debug.WriteLine(.get_TextLine(i))
 Next
End With

The following C# sample prints the line in the control:

for (int i = 1; i <= axCalcEdit1.Count; i++)
 System.Diagnostics.Debug.WriteLine(axCalcEdit1.get_TextLine(i));

The following VFP sample prints the line in the control:

with thisform.CalcEdit1.Object
 local i
 for i = 1 to .Count
 wait window nowait .TextLine(i)
 next
endwith

method CalcEdit.Undo ()
Call this function to undo the last edit-control operation.

Type Description

The control supports multi levels undo/redo support. The CTRL + Z reverses the last editing
action, The CTRL + Y restores the previously undone action. Use the Undo method to undo
the last edit-control operation. Use the CanUndo property to determine by code whether an
undo operation is available. Use the CanRedo property to determine by code whether a
redo operation is available. Use the Redo method to redo the next action in the control's
redo queue.

property CalcEdit.UseTabKey as Boolean
Specifies whether the control uses the TAB key.

Type Description

Boolean A boolean expression that specifies whether the control
uses the TAB key.

By default, the UseTabKey is False. If the UseTabKey property is True, the control inserts a
TAB character at the caret position, or indents the selection (if multiple lines are selected
). If the UseTabKey property is False, the control doesn't handle the TAB key. If the
UseTabKey property is False, the TAB key focuses the next visible control in the form. If the
Locked property is True, the UseTabKey property is False.

property CalcEdit.Variable(Name as String) as Variant
Indicates the value of the specified variable.

Type Description

Name as String A String expression that defines the name of the variable
to be requested.

Variant A VARIANT expression that indicates the value of the
requested variable.

The Variable(Name) property specifies the value of giving variable. By default, the control
supports variables such as Total and Count, which defines the Total of all valid lines, and
count of them. The AllowVariables property specifies the expression (no HTML) that
defines the equal operator, so you can define variables. The AddWildFormat method
formats the line based on the giving wild characters expression. By default, the control has
already the wild format defined as "<i>*=*</i>", which draws in italics any line that includes
the = (equal) character (define the variables). If the AllowVariables property is "", the
control does not support defining any variable. The CalcType property specifies the type of
operations the control supports.

The following samples show how you can define new variables using the "is" keyword, and
highlight lines that includes it:

property CalcEdit.Version as String
Retrieves the control's version.

Type Description

String A String expression that indicates the version of the
control.

The Version property is read-only. Use the Version property to identify the version of the
control you are running.

ExCalcEdit events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {0D4EE794-3E13-4226-81F9-499EE6EDCCF7}. The object's program identifier is: "Exontrol.CalcEdit".
The /COM object module is: "ExCalcEdit.dll"

The Exontrol's eXCalcEdit component supports the following events:

Name Description
Change Indicates that the control's text has changed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
SelChange Occurs when the user selects text in the control.

C#

VB

private void Change(object sender)
{
}

Private Sub Change(ByVal sender As System.Object) Handles Change
End Sub

C#

C++

C++
Builder

Delphi

private void Change(object sender, EventArgs e)
{
}

void OnChange()
{
}

void __fastcall Change(TObject *Sender)
{
}

procedure Change(ASender: TObject;);
begin
end;

event Change ()
Indicates that the control's text has changed.

Type Description

Use the Change event to notify you application that the user changes the text in the control.
Use the Text property to access the control's text. Use the Result property to access the
result. Use the SelChange event to notify your application when the user changes the
selection, or the cursor is moved to a new position. Use the CaretLine and CaretPos
properties to determine the caret's position.

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Change(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Change()
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Change
End Sub

Private Sub Change()
End Sub

Private Sub Change()
End Sub

LPARAMETERS nop

PROCEDURE OnChange(oCalcEdit)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Change()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change()
End Function
</SCRIPT>

Procedure OnComChange
 Forward Send OnComChange

Syntax for Change event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Change() CLASS MainDialog
RETURN NIL

void onEvent_Change()
{
}

function Change as v ()
end function

function nativeObject_Change()
return

The following VB sample displays the result in the output window:

Private Sub CalcEdit1_Change()
 Debug.Print CalcEdit1.Result
End Sub

The following VB.NET sample displays the result in the output window:

Private Sub AxCalcEdit1_Change(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles AxCalcEdit1.Change
 System.Diagnostics.Debug.WriteLine(AxCalcEdit1.Result.ToString())
End Sub

The following C# sample displays the result in the output window:

private void axCalcEdit1_Change(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine(axCalcEdit1.Result.ToString());
}

The following C++ sample displays the result in the output window:

void OnChangeCalcedit1()
{

 TCHAR szText[1024] = _T("");
 _stprintf(szText, _T("%f\n"), m_calcEdit.GetResult());
 OutputDebugString(szText);
}

The following VFP sample displays the result in the output window:

*** ActiveX Control Event ***

with thisform.CalcEdit1
 ? Str(.Result)
endwith

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click MouseDown and MouseUp events
lets you distinguish between the left, right, and middle mouse buttons. You can also write
code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oCalcEdit)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxExCALCEDITLib._ICalcEditEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

Use the DblClick event to notify your application that user double clicked the control. By
default, the control selects the word from the cursor when the user double clicks the
control's client area.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oCalcEdit,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.CalcEdit.1::OLE_XPOS_PIXELS,Y
as OLE::Exontrol.CalcEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. The control fires the Change event
when the user alters the control's content. Use the SelChange event to notify your
application when the user changes the selection, or the cursor is moved to a new position.
Use the And operator with the shift argument to test whether the condition is greater than 0,
indicating that the modifier was pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0

In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown then

Syntax for KeyDown event, /NET version, on:

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

private void KeyDownEvent(object sender,
AxExCALCEDITLib._ICalcEditEvents_KeyDownEvent e)
{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

Syntax for KeyDown event, /COM version, on:

Xbas… PROCEDURE OnKeyDown(oCalcEdit,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxExCALCEDITLib._ICalcEditEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters. The control fires the
Change event when the user alters the control's content.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oCalcEdit,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

private void KeyUpEvent(object sender,
AxExCALCEDITLib._ICalcEditEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key. The control fires the
Change event when the user alters the control's content.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oCalcEdit,KeyCode,Shift)
RETURN

Java… <SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

Syntax for KeyUp event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxExCALCEDITLib._ICalcEditEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oCalcEdit,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.CalcEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.CalcEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

private void MouseMoveEvent(object sender,
AxExCALCEDITLib._ICalcEditEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oCalcEdit,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.CalcEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.CalcEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxExCALCEDITLib._ICalcEditEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use the MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxExCALCEDITLib._ICalcEditEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxExCALCEDITLib._ICalcEditEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oCalcEdit,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.CalcEdit.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.CalcEdit.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void SelChange(object sender)
{
}

Private Sub SelChange(ByVal sender As System.Object) Handles SelChange
End Sub

C#

C++

C++
Builder

Delphi

private void SelChange(object sender, EventArgs e)
{
}

void OnSelChange()
{
}

void __fastcall SelChange(TObject *Sender)
{
}

procedure SelChange(ASender: TObject;);
begin
end;

event SelChange ()
Occurs when the user selects text in the control.

Type Description

Use the SelChange event to notify your application that the user changes the selection, or
the cursor is moved to a new position. Use the SelText property to get the selected
text. The SelStart and SelLenght properties determine the position of the selected text. Use
the SelForeColor and SelBackColor properties to specify the colors for the selected text.
Use the Change event to notify your application when the user alters the control's text. Use
the CaretLine and CaretPos properties to determine the caret's position.

Syntax for SelChange event, /NET version, on:

Syntax for SelChange event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure SelChange(sender: System.Object; e: System.EventArgs);
begin
end;

begin event SelChange()
end event SelChange

Private Sub SelChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SelChange
End Sub

Private Sub SelChange()
End Sub

Private Sub SelChange()
End Sub

LPARAMETERS nop

PROCEDURE OnSelChange(oCalcEdit)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="SelChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function SelChange()
End Function
</SCRIPT>

Procedure OnComSelChange
 Forward Send OnComSelChange

Syntax for SelChange event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_SelChange() CLASS MainDialog
RETURN NIL

void onEvent_SelChange()
{
}

function SelChange as v ()
end function

function nativeObject_SelChange()
return

The following VB sample displays the selected text when the user changes it:

Private Sub CalcCalcEdit1_SelChange()
 Debug.Print CalcEdit1.SelText
End Sub

The following C++ sample displays the selected text when the user changes it:

void OnSelChangeCalcEdit1()
{
 OutputDebugString(m_edit.GetSelText());
}

The following VB.NET sample displays the selected text when the user changes it:

Private Sub AxCalcCalcEdit1_SelChange(ByVal sender As Object, ByVal e As
System.EventArgs) Handles AxCalcEdit1.SelChange
 With AxCalcEdit1
 Debug.WriteLine(.SelText)
 End With
End Sub

The following C# sample displays the selected text when the user changes it:

private void axCalcCalcEdit1_SelChange(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine(axCalcEdit1.SelText);
}

The following VFP sample displays the selected text when the user changes it:

*** ActiveX Control Event ***

with thisform.CalcEdit1
 wait window nowait .SelText
endwith

Expressions

An expression is a string which defines a formula or criteria, that's evaluated at runtime. The
expression may be a combination of variables, constants, strings, dates and
operators/functions. For instance 1000 format `` gets 1,000.00 for US format, while
1.000,00 is displayed for German format.

The Exontrol's eXPression component is a syntax-editor that helps you to define, view, edit
and evaluate expressions. Using the eXPression component you can easily view or check if
the expression you have used is syntactically correct, and you can evaluate what is the
result you get giving different values to be tested. The Exontrol's eXPression component
can be used as an user-editor, to configure your applications.

Usage examples:

100 + 200, adds numbers and returns 300
"100" + 200, concatenates the strings, and returns "100200"
currency(1000) displays the value in currency format based on the current regional
setting, such as "$1,000.00" for US format.
1000 format `` gets 1,000.00 for English format, while 1.000,00 is displayed for
German format
1000 format `2|.|3|,` always gets 1,000.00 no matter of settings in the control panel.
upper("string") converts the giving string in uppercase letters, such as "STRING"
date(dateS('3/1/' + year(9:=#1/1/2018#)) + ((1:=(((255 - 11 * (year(=:9) mod 19)) - 21)
mod 30) + 21) + (=:1 > 48 ? -1 : 0) + 6 - ((year(=:9) + int(year(=:9) / 4)) + =:1 + (=:1
> 48 ? -1 : 0) + 1) mod 7)) returns the date the Easter Sunday will fall, for year 2018.
In this case the expression returns #4/1/2018#. If #1/1/2018# is replaced with
#1/1/2019#, the expression returns #4/21/2019#.

Listed bellow are all predefined constants, operators and functions the general-expression
supports:

The constants can be represented as:

numbers in decimal format (where dot character specifies the decimal separator).
For instance: -1, 100, 20.45, .99 and so on
numbers in hexa-decimal format (preceded by 0x or 0X sequence), uses sixteen
distinct symbols, most often the symbols 0-9 to represent values zero to nine, and A,
B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen.
Hexadecimal numerals are widely used by computer system designers and
programmers. As each hexadecimal digit represents four binary digits (bits), it allows a
more human-friendly representation of binary-coded values. For instance, 0xFF,

https://exontrol.com/expression.jsp

0x00FF00, and so so.
date-time in format #mm/dd/yyyy hh:mm:ss#, For instance, #1/31/2001 10:00#
means the January 31th, 2001, 10:00 AM
string, if it starts / ends with any of the ' or ` or " characters. If you require the starting
character inside the string, it should be escaped (preceded by a \ character). For
instance, `Mihai`, "Filimon", 'has', "\"a quote\"", and so on

The predefined constants are:

bias (BIAS constant), defines the difference, in minutes, between Coordinated
Universal Time (UTC) and local time. For example, Middle European Time (MET,
GMT+01:00) has a time zone bias of "-60" because it is one hour ahead of UTC.
Pacific Standard Time (PST, GMT-08:00) has a time zone bias of "+480" because it is
eight hours behind UTC. For instance, date(value - bias/24/60) converts the UTC time
to local time, or date(date('now') + bias/24/60) converts the current local time to UTC
time. For instance, "date(value - bias/24/60)" converts the value date-time from UTC to
local time, while "date(value + bias/24/60)" converts the local-time to UTC time.
dpi (DPI constant), specifies the current DPI setting. and it indicates the minimum
value between dpix and dpiy constants. For instance, if current DPI setting is 100%,
the dpi constant returns 1, if 150% it returns 1.5, and so on. For instance, the
expression value * dpi returns the value if the DPI setting is 100%, or value * 1.5 in
case, the DPI setting is 150%
dpix (DPIX constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpix constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpix returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%
dpiy (DPIY constant), specifies the current DPI setting on x-scale. For instance, if
current DPI setting is 100%, the dpiy constant returns 1, if 150% it returns 1.5, and so
on. For instance, the expression value * dpiy returns the value if the DPI setting is
100%, or value * 1.5 in case, the DPI setting is 150%

The supported binary arithmetic operators are:

* (multiplicity operator), priority 5
/ (divide operator), priority 5
mod (reminder operator), priority 5
+ (addition operator), priority 4 (concatenates two strings, if one of the operands is
of string type)
- (subtraction operator), priority 4

The supported unary boolean operators are:

not (not operator), priority 3 (high priority)

The supported binary boolean operators are:

or (or operator), priority 2
and (or operator), priority 1

The supported binary boolean operators, all these with the same priority 0, are :

< (less operator)
<= (less or equal operator)
= (equal operator)
!= (not equal operator)
>= (greater or equal operator)
> (greater operator)

The supported binary range operators, all these with the same priority 5, are :

a MIN b (min operator), indicates the minimum value, so a MIN b returns the value of
a, if it is less than b, else it returns b. For instance, the expression value MIN 10
returns always a value greater than 10.
a MAX b (max operator), indicates the maximum value, so a MAX b returns the value
of a, if it is greater than b, else it returns b. For instance, the expression value MAX
100 returns always a value less than 100.

The supported binary operators, all these with the same priority 0, are :

:= (Store operator), stores the result of expression to variable. The syntax for :=
operator is

variable := expression

where variable is a integer between 0 and 9. You can use the =: operator to restore
any stored variable (please make the difference between := and =:). For instance,
(0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and prints zero
if it is 0, else the converted number. Please pay attention that the := and =: are two
distinct operators, the first for storing the result into a variable, while the second for
restoring the variable

=: (Restore operator), restores the giving variable (previously saved using the store
operator). The syntax for =: operator is

=: variable

where variable is a integer between 0 and 9. You can use the := operator to store the
value of any expression (please make the difference between := and =:). For

instance, (0:=dbl(value)) = 0 ? "zero" : =:0, stores the value converted to double, and
prints zero if it is 0, else the converted number. Please pay attention that the := and =:
are two distinct operators, the first for storing the result into a variable, while the
second for restoring the variable

The supported ternary operators, all these with the same priority 0, are :

? (Immediate If operator), returns and executes one of two expressions, depending
on the evaluation of an expression. The syntax for ? operator is

expression ? true_part : false_part

, while it executes and returns the true_part if the expression is true, else it executes
and returns the false_part. For instance, the %0 = 1 ? 'One' : (%0 = 2 ? 'Two' : 'not
found') returns 'One' if the value is 1, 'Two' if the value is 2, and 'not found' for any
other value. A n-ary equivalent operation is the case() statement, which is available in
newer versions of the component.

The supported n-ary operators are (with priority 5):

array (at operator), returns the element from an array giving its index (0 base). The
array operator returns empty if the element is found, else the associated element in the
collection if it is found. The syntax for array operator is

expression array (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the month(value)-1 array
('J','F','M','A','M','Jun','J','A','S','O','N','D') is equivalent with month(value)-1 case
(default:''; 0:'J';1:'F';2:'M';3:'A';4:'M';5:'Jun';6:'J';7:'A';8:'S';9:'O';10:'N';11:'D').

in (include operator), specifies whether an element is found in a set of constant
elements. The in operator returns -1 (True) if the element is found, else 0 (false) is
retrieved. The syntax for in operator is

expression in (c1,c2,c3,...cn)

, where the c1, c2, ... are constant elements. The constant elements could be numeric,
date or string expressions. For instance the value in (11,22,33,44,13) is equivalent with
(expression = 11) or (expression = 22) or (expression = 33) or (expression = 44) or
(expression = 13). The in operator is not a time consuming as the equivalent or version
is, so when you have large number of constant elements it is recommended using the
in operator. Shortly, if the collection of elements has 1000 elements the in operator
could take up to 8 operations in order to find if an element fits the set, else if the or

statement is used, it could take up to 1000 operations to check, so by far, the in
operator could save time on finding elements within a collection.

switch (switch operator), returns the value being found in the collection, or a
predefined value if the element is not found (default). The syntax for switch operator is

expression switch (default,c1,c2,c3,...,cn)

, where the c1, c2, ... are constant elements, and the default is a constant element
being returned when the element is not found in the collection. The constant elements
could be numeric, date or string expressions. The equivalent syntax is "%0 = c 1 ? c 1
: (%0 = c 2 ? c 2 : (... ? . : default))". The switch operator is very similar with the in
operator excepts that the first element in the switch is always returned by the
statement if the element is not found, while the returned value is the value itself instead
-1. For instance, the %0 switch ('not found',1,4,7,9,11) gets 1, 4, 7, 9 or 11, or 'not
found' for any other value. As the in operator the switch operator uses binary searches
for fitting the element, so it is quicker that iif (immediate if operator) alterative.

case() (case operator) returns and executes one of n expressions, depending on the
evaluation of the expression (IIF - immediate IF operator is a binary case() operator).
The syntax for case() operator is:

expression case ([default : default_expression ;] c1 : expression1 ; c2 : expression2 ; c3 :
expression3 ;....)

If the default part is missing, the case() operator returns the value of the expression if it
is not found in the collection of cases (c1, c2, ...). For instance, if the value of
expression is not any of c1, c2, the default_expression is executed and returned. If
the value of the expression is c1, then the case() operator executes and returns the
expression1. The default, c1, c2, c3, ... must be constant elements as numbers, dates
or strings. For instance, the date(shortdate(value)) case (default:0 ; #1/1/2002#:1 ;
#2/1/2002#:1; #4/1/2002#:1; #5/1/2002#:1) indicates that only #1/1/2002#,
#2/1/2002#, #4/1/2002# and #5/1/2002# dates returns 1, since the others returns 0.
For instance the following sample specifies the hour being non-working for specified
dates: date(shortdate(value)) case(default:0;#4/1/2009# : hour(value) >= 6 and
hour(value) <= 12 ; #4/5/2009# : hour(value) >= 7 and hour(value) <= 10 or
hour(value) in(15,16,18,22); #5/1/2009# : hour(value) <= 8) statement indicates the
working hours for dates as follows:

#4/1/2009#, from hours 06:00 AM to 12:00 PM
#4/5/2009#, from hours 07:00 AM to 10:00 AM and hours 03:00PM,
04:00PM, 06:00PM and 10:00PM
#5/1/2009#, from hours 12:00 AM to 08:00 AM

The in, switch and case() use binary search to look for elements so they are faster then
using iif and or expressions. Obviously, the priority of the operations inside the expression is
determined by () parenthesis and the priority for each operator.

The supported conversion unary operators are:

type (unary operator) retrieves the type of the object. The type operator may return
any of the following: 0 - empty (not initialized), 1 - null, 2 - short, 3 - long, 4 - float, 5 -
double, 6 - currency, 7 - date, 8 - string, 9 - object, 10 - error, 11 - boolean, 12 -
variant, 13 - any, 14 - decimal, 16 - char, 17 - byte, 18 - unsigned short, 19 - unsigned
long, 20 - long on 64 bits, 21 - unsigned long on 64 bites. For instance type(%1) = 8
specifies the cells (on the column with the index 1) that contains string values.
str (unary operator) converts the expression to a string. The str operator converts the
expression to a string. For instance, the str(-12.54) returns the string "-12.54".
dbl (unary operator) converts the expression to a number. The dbl operator converts
the expression to a number. For instance, the dbl("12.54") returns 12.54
date (unary operator) converts the expression to a date, based on your regional
settings. For instance, the date(``) gets the current date (no time included), the
date(`now`) gets the current date-time, while the date("01/01/2001") returns
#1/1/2001#
dateS (unary operator) converts the string expression to a date using the format
MM/DD/YYYY HH:MM:SS. For instance, the dateS("01/01/2001 14:00:00") returns
#1/1/2001 14:00:00#
hex (unary operator) converts the giving string from hexa-representation to a numeric
value, or converts the giving numeric value to hexa-representation as string. For
instance, hex(`FF`) returns 255, while the hex(255) or hex(0xFF) returns the `FF`
string. The hex(hex(`FFFFFFFF`)) always returns `FFFFFFFF` string, as the second
hex call converts the giving string to a number, and the first hex call converts the
returned number to string representation (hexa-representation).

The bitwise operators for numbers are:

a bitand b (binary operator) computes the AND operation on bits of a and b, and
returns the unsigned value. For instance, 0x01001000 bitand 0x10111000 returns
0x00001000.
a bitor b (binary operator) computes the OR operation on bits of a and b, and returns
the unsigned value. For instance, 0x01001000 bitor 0x10111000 returns 0x11111000.
a bitxor b (binary operator) computes the XOR (exclusive-OR) operation on bits of a
and b, and returns the unsigned value. For instance, 0x01110010 bitxor 0x10101010
returns 0x11011000.
a bitshift (b) (binary operator) shifts every bit of a value to the left if b is negative, or
to the right if b is positive, for b times, and returns the unsigned value. For instance,
128 bitshift 1 returns 64 (dividing by 2) or 128 bitshift (-1) returns 256 (multiplying by

2)
bitnot (unary operator) flips every bit of x, and returns the unsigned value. For
instance, bitnot(0x00FF0000) returns 0xFF00FFFF.

The operators for numbers are:

int (unary operator) retrieves the integer part of the number. For instance, the
int(12.54) returns 12
round (unary operator) rounds the number ie 1.2 gets 1, since 1.8 gets 2. For
instance, the round(12.54) returns 13
floor (unary operator) returns the largest number with no fraction part that is not
greater than the value of its argument. For instance, the floor(12.54) returns 12
abs (unary operator) retrieves the absolute part of the number ie -1 gets 1, 2 gets 2.
For instance, the abs(-12.54) returns 12.54
sin (unary operator) returns the sine of an angle of x radians. For instance, the
sin(3.14) returns 0.001593.
cos (unary operator) returns the cosine of an angle of x radians. For instance, the
cos(3.14) returns -0.999999.
asin (unary operator) returns the principal value of the arc sine of x, expressed in
radians. For instance, the 2*asin(1) returns the value of PI.
acos (unary operator) returns the principal value of the arc cosine of x, expressed in
radians. For instance, the 2*acos(0) returns the value of PI
sqrt (unary operator) returns the square root of x. For instance, the sqrt(81) returns 9.
currency (unary operator) formats the giving number as a currency string, as indicated
by the control panel. For instance, currency(value) displays the value using the current
format for the currency ie, 1000 gets displayed as $1,000.00, for US format.
value format 'flags' (binary operator) formats the value with specified flags. If flags is
empty, the number is displayed as shown in the field "Number" in the "Regional and
Language Options" from the Control Panel. For instance the 1000 format '' displays
1,000.00 for English format, while 1.000,00 is displayed for German format. 1000
format '2|.|3|,' will always displays 1,000.00 no matter of settings in the control panel.
If formatting the number fails for some invalid parameter, the value is displayed with no
formatting.

The ' flags' for format operator is a list of values separated by | character such as
'NumDigits|DecimalSep|Grouping|ThousandSep|NegativeOrder|LeadingZero' with the
following meanings:

NumDigits - specifies the number of fractional digits, If the flag is missing, the field
"No. of digits after decimal" from "Regional and Language Options" is using.
DecimalSep - specifies the decimal separator. If the flag is missing, the field
"Decimal symbol" from "Regional and Language Options" is using.
Grouping - indicates the number of digits in each group of numbers to the left of

the decimal separator. Values in the range 0 through 9 and 32 are valid. The most
significant grouping digit indicates the number of digits in the least significant group
immediately to the left of the decimal separator. Each subsequent grouping digit
indicates the next significant group of digits to the left of the previous group. If the
last value supplied is not 0, the remaining groups repeat the last group. Typical
examples of settings for this member are: 0 to group digits as in 123456789.00; 3
to group digits as in 123,456,789.00; and 32 to group digits as in
12,34,56,789.00. If the flag is missing, the field "Digit grouping" from "Regional
and Language Options" indicates the grouping flag.
ThousandSep - specifies the thousand separator. If the flag is missing, the field
"Digit grouping symbol" from "Regional and Language Options" is using.
NegativeOrder - indicates the negative number mode. If the flag is missing, the
field "Negative number format" from "Regional and Language Options" is using.
The valid values are 0, 1, 2, 3 and 4 with the following meanings:

0 - Left parenthesis, number, right parenthesis; for example, (1.1)
1 - Negative sign, number; for example, -1.1
2 - Negative sign, space, number; for example, - 1.1
3 - Number, negative sign; for example, 1.1-
4 - Number, space, negative sign; for example, 1.1 -

LeadingZero - indicates if leading zeros should be used in decimal fields. If the
flag is missing, the field "Display leading zeros" from "Regional and Language
Options" is using. The valid values are 0, 1

The operators for strings are:

len (unary operator) retrieves the number of characters in the string. For instance, the
len("Mihai") returns 5.
lower (unary operator) returns a string expression in lowercase letters. For instance,
the lower("MIHAI") returns "mihai"
upper (unary operator) returns a string expression in uppercase letters. For instance,
the upper("mihai") returns "MIHAI"
proper (unary operator) returns from a character expression a string capitalized as
appropriate for proper names. For instance, the proper("mihai") returns "Mihai"
ltrim (unary operator) removes spaces on the left side of a string. For instance, the
ltrim(" mihai") returns "mihai"
rtrim (unary operator) removes spaces on the right side of a string. For instance, the
rtrim("mihai ") returns "mihai"
trim (unary operator) removes spaces on both sides of a string. For instance, the
trim(" mihai ") returns "mihai"
reverse (unary operator) reverses the order of the characters in the string a. For
instance, the reverse("Mihai") returns "iahiM"
a startwith b (binary operator) specifies whether a string starts with specified string (

0 if not found, -1 if found). For instance "Mihai" startwith "Mi" returns -1
a endwith b (binary operator) specifies whether a string ends with specified string (0
if not found, -1 if found). For instance "Mihai" endwith "ai" returns -1
a contains b (binary operator) specifies whether a string contains another specified
string (0 if not found, -1 if found). For instance "Mihai" contains "ha" returns -1
a left b (binary operator) retrieves the left part of the string. For instance "Mihai" left 2
returns "Mi".
a right b (binary operator) retrieves the right part of the string. For instance "Mihai"
right 2 returns "ai"
a lfind b (binary operator) The a lfind b (binary operator) searches the first occurrence
of the string b within string a, and returns -1 if not found, or the position of the result (
zero-index). For instance "ABCABC" lfind "C" returns 2
a rfind b (binary operator) The a rfind b (binary operator) searches the last
occurrence of the string b within string a, and returns -1 if not found, or the position of
the result (zero-index). For instance "ABCABC" rfind "C" returns 5.
a mid b (binary operator) retrieves the middle part of the string a starting from b (1
means first position, and so on). For instance "Mihai" mid 2 returns "ihai"
a count b (binary operator) retrieves the number of occurrences of the b in a. For
instance "Mihai" count "i" returns 2.
a replace b with c (double binary operator) replaces in a the b with c, and gets the
result. For instance, the "Mihai" replace "i" with "" returns "Mha" string, as it replaces
all "i" with nothing.
a split b (binary operator) splits the a using the separator b, and returns an array. For
instance, the weekday(value) array 'Sun Mon Thu Wed Thu Fri Sat' split ' ' gets the
weekday as string. This operator can be used with the array.
a like b (binary operator) compares the string a against the pattern b. The pattern b
may contain wild-characters such as *, ?, # or [] and can have multiple patterns
separated by space character. In order to have the space, or any other wild-character
inside the pattern, it has to be escaped, or in other words it should be preceded by a \
character. For instance value like `F*e` matches all strings that start with F and ends
on e, or value like `a* b*` indicates any strings that start with a or b character.
a lpad b (binary operator) pads the value of a to the left with b padding pattern. For
instance, 12 lpad "0000" generates the string "0012".
a rpad b (binary operator) pads the value of a to the right with b padding pattern. For
instance, 12 lpad "____" generates the string "12__".
a concat b (binary operator) concatenates the a (as string) for b times. For instance,
"x" concat 5, generates the string "xxxxx".

The operators for dates are:

time (unary operator) retrieves the time of the date in string format, as specified in the
control's panel. For instance, the time(#1/1/2001 13:00#) returns "1:00:00 PM"

timeF (unary operator) retrieves the time of the date in string format, as "HH:MM:SS".
For instance, the timeF(#1/1/2001 13:00#) returns "13:00:00"
shortdate (unary operator) formats a date as a date string using the short date
format, as specified in the control's panel. For instance, the shortdate(#1/1/2001
13:00#) returns "1/1/2001"
shortdateF (unary operator) formats a date as a date string using the
"MM/DD/YYYY" format. For instance, the shortdateF(#1/1/2001 13:00#) returns
"01/01/2001"
dateF (unary operator) converts the date expression to a string expression in
"MM/DD/YYYY HH:MM:SS" format. For instance, the dateF(#01/01/2001 14:00:00#)
returns #01/01/2001 14:00:00#
longdate (unary operator) formats a date as a date string using the long date format,
as specified in the control's panel. For instance, the longdate(#1/1/2001 13:00#)
returns "Monday, January 01, 2001"
year (unary operator) retrieves the year of the date (100,...,9999). For instance, the
year(#12/31/1971 13:14:15#) returns 1971
month (unary operator) retrieves the month of the date (1, 2,...,12). For instance, the
month(#12/31/1971 13:14:15#) returns 12.
day (unary operator) retrieves the day of the date (1, 2,...,31). For instance, the
day(#12/31/1971 13:14:15#) returns 31
yearday (unary operator) retrieves the number of the day in the year, or the days since
January 1st (0, 1,...,365). For instance, the yearday(#12/31/1971 13:14:15#) returns
365
weekday (unary operator) retrieves the number of days since Sunday (0 - Sunday, 1 -
Monday,..., 6 - Saturday). For instance, the weekday(#12/31/1971 13:14:15#) returns
5.
hour (unary operator) retrieves the hour of the date (0, 1, ..., 23). For instance, the
hour(#12/31/1971 13:14:15#) returns 13
min (unary operator) retrieves the minute of the date (0, 1, ..., 59). For instance, the
min(#12/31/1971 13:14:15#) returns 14
sec (unary operator) retrieves the second of the date (0, 1, ..., 59). For instance, the
sec(#12/31/1971 13:14:15#) returns 15

The expression supports also immediate if (similar with iif in visual basic, or ? : in C++) ie
cond ? value_true : value_false, which means that once that cond is true the value_true is
used, else the value_false is used. Also, it supports variables, up to 10 from 0 to 9. For
instance, 0:="Abc" means that in the variable 0 is "Abc", and =:0 means retrieves the value
of the variable 0. For instance, the len(%0) ? (0:=(%1+%2) ? currency(=:0) else ``) : ``
gets the sum between second and third column in currency format if it is not zero, and only
if the first column is not empty. As you can see you can use the variables to avoid
computing several times the same thing (in this case the sum %1 and %2 .

	Information
	How to get support?
	CalcEdit
	AddDecimalSep property
	AddWildFormat method
	AllowComments property
	AllowCount property
	AllowFormatInvalidOnTyping property
	AllowPrefixes property
	AllowSubCount property
	AllowSubTotal property
	AllowTotal property
	AllowUndoRedo property
	AllowVariables property
	Appearance property
	AttachTemplate method
	BackColor property
	BackColorLockedLine property
	BackColorSubTotal property
	BackColorTotal property
	CalcType property
	CanRedo property (readonly)
	CanUndo property (readonly)
	CaretLine property
	CaretPos property
	ClearWildFormats method
	Count property (readonly)
	DeleteWildFormat method
	DrawGridLines property
	Enabled property
	EvaluateSel property
	ExecuteTemplate method
	Export property (readonly)
	Font property
	ForeColor property
	ForeColorLockedLine property
	FormatABC method
	FormatCountResult property
	FormatInvalid property
	FormatLocal property
	FormatNumbers property
	FormatResult property
	FormatSubCountResult property
	FormatSubTotalResult property
	FormatTotalResult property
	GridLineColor property
	HideSelection property
	hWnd property (readonly)
	InsertLockedText method
	InsertText method
	IsValid property (readonly)
	LineHeight property
	Locked property
	Margin property
	MultiLine property
	Overtype property
	Picture property
	PictureDisplay property
	Redo method
	Refresh method
	Result property (readonly)
	SelBackColor property
	SelForeColor property
	SelLength property
	SelStart property
	SelText property
	Template property
	TemplateDef property
	TemplatePut method
	Text property
	TextLine property
	Undo method
	UseTabKey property
	Variable property
	Version property

	ExCalcEdit events
	Change event
	Click event
	DblClick event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	SelChange event

