
 ExCalc

Exontrol's ExCalc component provides calculator features to your application. The exCalc
component provides implementation for arithmetic operations like addition, subtraction,
division and multiplication.

Features include:

WYSWYG Template/Layout Editor support
Drop down version included
Support for arithmetic operation like +,-, * or /
Built-in HTML caption support
Ability to specify the layout for the calculator's matrix
Ability to specify the pictures for up or down buttons
Picture background support
Custom buttons support
Ability to execute operations without showing the control's drop down portion
and more

 

Ž ExCalc is a trademark of Exontrol. All Rights Reserved.



How to get support?

 

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com ( please include the
name of the product in the subject, ex: exgrid ) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

 

 

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com


constants AppearanceEnum
Specifies the  source's appearance.

Name Value Description
None2 0 The source has no borders.
Flat 1 Flat border
Sunken 2 Sunken border
Raised 3 Raised border
Etched 4 Etched border
Bump 5 Bump border

 



constants MessageEnum
The MessageEnum type specifies the list of values that can be changed using the Message
property.

Name Value Description
exCannotDivideByZero 0 Specifies the message "Cannot divide by zero.".

 



constants PictureDisplayEnum
Specifies how a picture object is displayed. Use the PictureDisplay property to align the
control's Picture on its background.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source.

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

 



Calc object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag:  <object classid="clsid:...">)  using
the class identifier: {74B7322B-D54B-47AD-A891-AC60B02EE192}. The object's program identifier is: "Exontrol.Calc". The
/COM object module is: "ExCalc.dll"

The Exontrol's Calc component provides calculator features to your application. The Calc
object supports the following properties and methods: 

Name Description
Appearance Retrieves or sets the control's appearance.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

BeginUpdate
Maintains performance when items are added to the
control one at a time. This method prevents the control
from painting until the EndUpdate method is called.

ButtonFromPoint Retrieves the button from the point.
ButtonHeight Specifies the height of the control's buttons.
Buttons Specifies the list of buttons in the control.
ButtonWidth Specifies the width of the control's buttons.
CalcHeight Gets the height in pixels of the painted area.
CalcWidth Gets the width in pixels of the painted area.
Caption Specifies the control's caption.
Copy Copies the control's content to the clipboard.
DecimalSymbol Specifies the current decimal symbol.
EditBackColor Specifies the control's edit background color.
EditForeColor Specifies the control's edit foreground color.
EditHeight Specifies the height of the control's edit portion.
Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

Execute Executes a command.
ExecuteTemplate Executes a template and returns the result.



Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Images List Control.

ImageSize Retrieves or sets the size of icons the control displays..

Message Retrieves or sets a value that indicates the control's
message.

Paste Inserts data from the clipboard.
Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

PictureDown Specifies the picture that's displayed when the button is
down.

PictureUp Specifies the picture that's displayed when the button is
up.

Refresh Refreshes the control.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

Reset Resets the control

ShowImageList Specifies whether the control's image list window is visible
or hidden.

Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

Version Retrieves the control's version.



property Calc.Appearance as AppearanceEnum
Retrieves or sets the control's appearance.

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
control's border style.

Use the Appearance property to define the control's border style. Use the Appearance
property to hide the control borders.



method Calc.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code ( including
events ), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
( /COM version ):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible = 
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Calc1_Click()
    With CreateObject("internetexplorer.application")
        .Visible = True
        .Navigate ("https://www.exontrol.com")
    End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]



<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" ( newline characters ) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.



property Calc.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

Use the BackColor property to set the control's background color. Use the ForeColor
property to change the control's foreground color. Use the EditBackColor property to
specify the control's edit background color. Use the EditForeColor property to specify the
control's edit foreground color.



method Calc.BeginUpdate ()
Maintains performance when items are added to the control one at a time.

Type Description

This method prevents the control from painting until the EndUpdate method is called.



property Calc.ButtonFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the button from the point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates

String A string expression that indicates the name of the button
over the point (x,y) excluding the HTML tags. 

Use the ButtonFromPoint property to get the button from cursor.

The following sample displays the button from cursor:

Private Sub Calc1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
    With Calc1
        Debug.Print .ButtonFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
    End With
End Sub

 



property Calc.ButtonHeight as Long
Specifies the height of the control's buttons.

Type Description

Long A long expression that indicates the height of the buttons,
in pixels.

By default, the ButtonHeight property is 24 pixels. Use the ButtonHeight and ButtonWidth
property to specify the height and the width of the buttons in the control. Use the
PictureDown and PictureUp properties to specify the picture for the buttons. Use the
Buttons property to customize the control's matrix of buttons. Use the EditHeight property to
specify the height of the control's edit portion.



property Calc.Buttons as String
Specifies the list of buttons in the control.

Type Description

String

A string expression that indicates the list of buttons being
displayed. The rows are separated by chr(13)+chr(10) (
vbCrLf ) sequence, and the buttons inside the row are
separated by ';' character.

The Buttons property specifies the buttons and the layout of the buttons in the control. Use
the PictureDown and PictureUp properties to specify the picture for the buttons. Use the
ButtonHeight and ButtonWidth property to specify the height and the width of the buttons in
the control. The ClickButton event occurs when the user clicks a button in the calculator.
You can use the ButtonFromPoint property to get the button from the point. The
DecimalSymbol property returns the current decimal symbol. The system's decimal symbol
can be changed in your Control panel, under the Regional settings.

Each button supports built-in HTML format like follows:

<b> ... </b> displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... </a> displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
<font face;size> ... </font> displays portions of text with a different font and/or
different size. For instance, the "<font Tahoma;12>bit</font>" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font
;12>bit</font>" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>

about:blank


... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text
<br> forces a line-break
<img>number[:width]</img> inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
<img>key[:width]</img> inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as &amp; ( & ), &lt; ( < ), &gt; ( > ),  &qout; ( " ) and &#number;
( the character with specified code ), For instance, the &#8364; displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
<b>bold</b> in HTML caption you can use &lt;b&gt;bold&lt;/b&gt;
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the <font face;size> to define a smaller or a larger font
to be displayed. For instance: "Text with <font ;7><off 6>subscript" displays the text
such as: Text with subscript The "Text with <font ;7><off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The <font>
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient



color from the current text color to gray (808080). For instance the "<font ;18><gra
FFFFFF;1;1>gradient-center</gra></font>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The <font> HTML tag can be used to define the
height of the font. For instance the "<font ;31><out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out></font>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The <font> HTML tag can be used to define the height of
the font.  For instance the "<font ;31><sha>shadow</sha></font>" generates the
following picture:

or  "<font ;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha></font>" gets:

By default, the Buttons property is "<fgcolor=0000FF><b>7</b></fgcolor>;
<fgcolor=0000FF><b>8</b></fgcolor>;<fgcolor=0000FF><b>9</b></fgcolor>;
<fgcolor=FF0000>/</fgcolor>;C\r\n<fgcolor=0000FF><b>4</b></fgcolor>;
<fgcolor=0000FF><b>5</b></fgcolor>;<fgcolor=0000FF><b>6</b></fgcolor>;
<fgcolor=FF0000>*</fgcolor>;1/x\r\n<fgcolor=0000FF><b>1</b></fgcolor>;
<fgcolor=0000FF><b>2</b></fgcolor>;<fgcolor=0000FF><b>3</b></fgcolor>;
<fgcolor=FF0000>-</fgcolor>;sqrt\r\n<fgcolor=0000FF><b>0</b></fgcolor>;
<fgcolor=0000FF><b>+/-</b></fgcolor>;<fgcolor=0000FF><b>.</b></fgcolor>;
<fgcolor=FF0000>+</fgcolor>;<fgcolor=000080><b>=</b></fgcolor>"

Use the Caption property to access the control's caption. Use the Execute method to
execute operations inside the control. 

The following sample adds a new button 'sin' and execute the trigonometric sin function
when 'sin' button is clicked:



Private Sub Form_Load()
    With Calc1
        .Buttons = .Buttons + vbCrLf + "<b>sin<b>"
    End With
End Sub

Private Sub Calc1_ClickButton(ByVal Button As String, Cancel As Variant)
    If (Button = "sin") Then
        With Calc1
            .Execute Sin(.Caption)
        End With
    End If
End Sub



property Calc.ButtonWidth as Long
Specifies the width of the control's buttons.

Type Description

Long A long expression that indicates the width of the buttons, in
pixels.

By default, the ButtonWidth property is 32 pixels. Use the ButtonHeight and ButtonWidth
property to specify the height and the width of the buttons in the control. Use the
PictureDown and PictureUp properties to specify the picture for the buttons. Use the
Buttons property to customize the control's matrix of buttons.



property Calc.CalcHeight as Long
Gets the height in pixels of the painted area.

Type Description

Long A long expression that indicates the height in pixels of the
control to fit all the buttons in the control's client area.

Use the CalcHeight and CalcWidth properties to get the size of the control to fit all the
buttons inside the control's client area. Use the Buttons property to customize the control's
matrix of buttons. Use the ButtonHeight and ButtonWidth property to specify the height and
the width of the buttons in the control. The CalcWidth and CalcHeight properties does not
include the size of the borders. Use the Appearance property to remove the control's
borders.

The following sample resizes the control to fit all the buttons in the control's visible area:

Private Sub Form_Resize()
    With Calc1
        .Width = .CalcWidth * Screen.TwipsPerPixelX
        .Height = .CalcHeight * Screen.TwipsPerPixelY
    End With
End Sub



property Calc.CalcWidth as Long
Gets the width in pixels of the painted area.

Type Description

Long A long expression that indicates the height in pixels of the
control to fit all the buttons in the control's client area.

Use the CalcHeight and CalcWidth properties to get the size of the control to fit all the
buttons inside the control's client area. Use the Buttons property to customize the control's
matrix of buttons.  Use the ButtonHeight and ButtonWidth property to specify the height and
the width of the buttons in the control. The CalcWidth and CalcHeight properties does not
include the size of the borders. Use the Appearance property to remove the control's
borders.

The following sample resizes the control to fit all the buttons in the control's visible area:

Private Sub Form_Resize()
    With Calc1
        .Width = .CalcWidth * Screen.TwipsPerPixelX
        .Height = .CalcHeight * Screen.TwipsPerPixelY
    End With
End Sub



property Calc.Caption as String
Specifies the control's caption.

Type Description
String A string expression that specifies the control's caption. 

Use the Caption property to access the control's caption. The Change event notifies your
application when the control's caption is changed. The Caption property erases the control's
operators and operation stack and replaces the control's caption. By default, the Caption
property replaces the control's stack ( operators and operations ) with giving caption. If the
new caption just change the format of the Caption property ( includes just HTML tags ), the
new format is applied to the control's label and control's stack ( operators and operations )
is not altered. For instance, let's say that the control's label displays the number 78, and
during the Change event your application change the Caption property to "<sha ;;0><b>" +
Caption. In this case, the content of the Caption is not change, instead just the new HTML
format is applied to the control's label, so operations on the calculator can continue. Use the
Execute method to execute operations. Use the Buttons property to assign a different
matrix of digits and operators to the control. Use the Reset method to reset the control. The
Reset method erases the control's caption as well as the internal stack of operators and
operations.

The following sample displays the control's caption as soon as user types characters in the
control:

Private Sub Calc1_Change()
    With Calc1
        Debug.Print .Caption
    End With
End Sub 

The Caption property supports built-in HTML format like follows:

<b> ... </b> displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... </a> displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

about:blank


<font face;size> ... </font> displays portions of text with a different font and/or
different size. For instance, the "<font Tahoma;12>bit</font>" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font
;12>bit</font>" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text
<br> forces a line-break
<img>number[:width]</img> inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
<img>key[:width]</img> inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as &amp; ( & ), &lt; ( < ), &gt; ( > ),  &qout; ( " ) and &#number;
( the character with specified code ), For instance, the &#8364; displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
<b>bold</b> in HTML caption you can use &lt;b&gt;bold&lt;/b&gt;



<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the <font face;size> to define a smaller or a larger font
to be displayed. For instance: "Text with <font ;7><off 6>subscript" displays the text
such as: Text with subscript The "Text with <font ;7><off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The <font>
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<font ;18><gra
FFFFFF;1;1>gradient-center</gra></font>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The <font> HTML tag can be used to define the
height of the font. For instance the "<font ;31><out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out></font>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The <font> HTML tag can be used to define the height of
the font.  For instance the "<font ;31><sha>shadow</sha></font>" generates the
following picture:

or  "<font ;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha></font>" gets:

The following sample displays the 'Cannot execute the operation' string:



Calc1.Caption = "Cannot <b>execute</b> the operation."



method Calc.Copy ()
Copies the control's content to the clipboard.

Type Description

The Copy method copies the control's caption to the clipboard. Use the Caption property to
access the control's caption. Use the Paste method to paste the control's clipboard in the
control's label area.



property Calc.DecimalSymbol as String
Specifies the current decimal symbol.

Type Description

String A String expression that indicates the current decimal
symbol.

The DecimalSymbol property returns the current decimal symbol. The system's decimal
symbol can be changed in your Control panel, under the Regional settings. Use the Refresh
method to reinitialize the Buttons property to re-read the decimal symbol.



property Calc.EditBackColor as Color
Specifies the control's edit background color.

Type Description

Color A color expression that indicates the control's edit
background color.

Use the EditBackColor property to specify the control's edit background color. Use the
EditForeColor property to specify the control's edit foreground color. Use the ForeColor
property to change the control's foreground color. Use the BackColor property to set the
control's background color.



property Calc.EditForeColor as Color
Specifies the control's edit foreground color.

Type Description

Color A color expression that indicates the control's edit
foreground color.

Use the EditForeColor property to specify the control's edit foreground color. Use the
EditBackColor property to specify the control's edit background color. Use the ForeColor
property to change the control's foreground color. Use the BackColor property to set the
control's background color.



property Calc.EditHeight as Long
Specifies the height of the control's edit portion.

Type Description

Long A long expression that indicates the height of the control's
edit in pixels. 

By default, the EditHeight property is 24 pixels. Use the EditHeight property to specify the
height of the control's edit portion. Use the EditHeight property on 0 to hide the control's
edit.



property Calc.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to enable or disable the control.



method Calc.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

 



property Calc.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer ( E_POINTER ) 

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it ( uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on ). For instance,  Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 ( the operation is
successfully, only if the parameter is passed by reference ). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus. 

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
    KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
    Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by



reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.



method Calc.Execute (Command as String)
Executes a command.

Type Description

Command as String A string expression that indicates the newly control's
caption or the operation being executed.

Use the Execute method to execute commands in the control. The Execute method adds
operations and operators to the control's stack. The Execute method does not clear the
control's stack. The Caption property erases the control's operators and operation stack
and replaces the control's caption. The Change event notifies your application when the
control's caption is changed.

The following sample multiplies two numbers:

With Calc1
    .Execute "12.123"
    .Execute "*"
    .Execute "-123"
    .Execute "="
End With



method Calc.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string ( template
string ).

For instance,  the following sample retrieves the beginning date ( as string ) for the default
bar in the first visible item:

Debug.Print Calc1.ExecuteTemplate("Items.ItemBar(FirstVisibleItem(),``,1)")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor. 

Place the control to your form or dialog. 
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control  on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence ( when Apply button is pressed ), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string ( template string ). 

The Template script is composed by lines of instructions. Instructions are separated by



"\n\r" ( newline ) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. ( Sample: Dim h, h1, h2 )
variable = property( list of arguments ) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas.  ( Sample: h = InsertItem(0,"New Child") )
property( list of arguments ) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method( list of arguments ) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property( list of arguments ).property( list of arguments ).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

 



property Calc.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object being used. 

Use the Font property to assign a font to the control.



property Calc.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates the control's foreground
color.

Use the ForeColor property to change the control's foreground color. Use the BackColor
property to set the control's background color. Use the EditBackColor property to specify
the control's edit background color. Use the EditForeColor property to specify the control's
edit foreground color.



property Calc.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings: 

a string expression that indicates the path to the
picture file, being loaded. 
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format. 
A Picture object that indicates the picture being added
or replaced. ( A Picture object implements IPicture
interface ), 

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the <img> tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "<img>pic1</img>" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object ( this
implements the IPictureDisp interface ).

The following sample shows how to put a custom size picture in the column's header:

<CONTROL>.HTMLPicture("pic1") = "c:/temp/editors.gif"
<CONTROL>.HTMLPicture("pic2") = "c:/temp/editpaste.gif"

<COLUMN1>.HTMLCaption = "A <img>pic1</img>"
<COLUMN2>.HTMLCaption = "B <img>pic2</img>"
<COLUMN3>.HTMLCaption = "A <img>pic1</img> + B <img>pic2</img>"

https://exontrol.com/eximages.jsp


 



property Calc.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long value that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.



method Calc.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Images List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path) 
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control ( the Handle should be of HIMAGELIST
type ). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type ( signed 64-bit (8-byte) integers ), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images( COleVariant(
(LONG_PTR)hImageList) ) or Images( COleVariant(

https://exontrol.com/eximages.jsp


(LONGLONG)hImageList) ), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

The control provides an image list window, that's displayed at design time. Use the
ShowImageList property to hide the image list window, at design time. At design time, the
user can add new icons to the control's Images collection, by dragging icon files, exe files,
etc, to the images list window. At runtime, the user can use the Images and ReplaceIcon
method to change the Images collection. The Images collection is 1 based. (Currently, the
property has no effect). The ImageSize property defines the size (width/height) of the icons
within the control's Images collection.



property Calc.ImageSize as Long
Retrieves or sets the size of the control' icons.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.



property Calc.Message(Msg as MessageEnum) as String
Retrieves or sets a value that indicates the control's message.

Type Description

Msg as MessageEnum A MessageEnum expression that indicates the value being
changed

String A string expression that indicates the message being
changed. It supports built-in HTML format.

Use the Message property to customize the string being displayed by the control when an
error occurs. 

The following sample changes the "Cannot divide by zero.", that's displayed when the
calculator performs a division by zero:

Calc1.Message(exCannotDivideByZero) = "Divide by zero."

The Message property supports built-in HTML format like follows:

<b> ... </b> displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... </a> displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
<font face;size> ... </font> displays portions of text with a different font and/or
different size. For instance, the "<font Tahoma;12>bit</font>" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font
;12>bit</font>" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank


line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text
<br> forces a line-break
<img>number[:width]</img> inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
<img>key[:width]</img> inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as &amp; ( & ), &lt; ( < ), &gt; ( > ),  &qout; ( " ) and &#number;
( the character with specified code ), For instance, the &#8364; displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
<b>bold</b> in HTML caption you can use &lt;b&gt;bold&lt;/b&gt;
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the <font face;size> to define a smaller or a larger font
to be displayed. For instance: "Text with <font ;7><off 6>subscript" displays the text
such as: Text with subscript The "Text with <font ;7><off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The <font>
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or



blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<font ;18><gra
FFFFFF;1;1>gradient-center</gra></font>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The <font> HTML tag can be used to define the
height of the font. For instance the "<font ;31><out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out></font>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The <font> HTML tag can be used to define the height of
the font.  For instance the "<font ;31><sha>shadow</sha></font>" generates the
following picture:

or  "<font ;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha></font>" gets:



method Calc.Paste ()
Inserts data from the clipboard.

Type Description

Use the Paste method to paste the control's clipboard in the control's label area. Use the
Caption property to access the control's caption. The Copy method copies the control's
caption to the clipboard.



property Calc.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object that indicates the control's picture.

Use the Picture property to load a picture on the control's background. Use the
PictureDisplay property to arrange the picture on the control's background.



property Calc.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates the way
how the control's picture is displayed on its background.

Use the Picture property to load a picture into the control's background. Use the
PictureDisplay property to arrange how the control's picture is displayed on its background.
Use the PictureDown and PictureUp properties to specify the picture for the buttons.



property Calc.PictureDown as Variant
Specifies the picture that's displayed when the button is down.

Type Description

Variant

A Picture object that indicates the cell's picture. ( A Picture
object implements IPicture interface ), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

Use the PictureDown and PictureUp properties to specify the picture for the buttons. Use
the Picture property to load a picture into the control's background. Use the PictureDisplay
property to arrange how the control's picture is displayed on its background. Use the
ButtonHeight and ButtonWidth property to specify the height and the width of the buttons in
the control.

The following sample assigns different images  to the buttons:

PictureUp = 
"gBHJJGHA5MIgAEIe4AAAFhyFiC9fa9bDbbABjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nE5nU7nkihgAEL5AgBhj/AAsn8JpRABCZAD/BIcJCwUDBQYIAIILDIWChYaHAACEh8JCxMTERIVGYyXiIeAfQCPEBDRQMbJRUBCRoaHIaHiJaSiYiSGBjZScBKTMpLRAdNreNioWSgZydBZ7CT8BJUdBAUQ7RoODrJKjkJaaKCjJSdJQVFJKAAlVq2KjqCIoYinHy9HTkVT1FTYUJiPKeHqaOzjLSTNqDXztDSXNhcAJcdKKZo7GCAb6/QADf6lJS4GDCQAAHcBA"

PictureDown = 
"gBHJJGHA5MIgAEIe4AAAFhyFiDYiQBikVi0XjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nEhhgAEL5AgBhj/AAsncJoxABCCAD/BIcJCwUDBQYIAIgLhICBAQCEBgjHSEDBxcJERYAGRqbjIKKjYiKCwfDxUBByUjISQoKaqUi4eQfZKRFoFLw0fBycrMQQ1KreNgYablv4dQZyfjZWaoaKjEBzSxUZQzczOQJMS4SQraeapZiqKavHTNdQSFZLTZcUYmBrreorJSrAoDVBdZa2dpaUhwMYGAgAHcBA=="

https://exontrol.com/eximages.jsp


property Calc.PictureUp as Variant
Specifies the picture that's displayed when the button is up.

Type Description

Variant

A Picture object that indicates the cell's picture. ( A Picture
object implements IPicture interface ), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

Use the PictureDown and PictureUp properties to specify the picture for the buttons. Use
the Picture property to load a picture into the control's background. Use the PictureDisplay
property to arrange how the control's picture is displayed on its background. Use the
ButtonHeight and ButtonWidth property to specify the height and the width of the buttons in
the control.

The following sample assigns different images  to the buttons:

PictureUp = 
"gBHJJGHA5MIgAEIe4AAAFhyFiC9fa9bDbbABjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nE5nU7nkihgAEL5AgBhj/AAsn8JpRABCZAD/BIcJCwUDBQYIAIILDIWChYaHAACEh8JCxMTERIVGYyXiIeAfQCPEBDRQMbJRUBCRoaHIaHiJaSiYiSGBjZScBKTMpLRAdNreNioWSgZydBZ7CT8BJUdBAUQ7RoODrJKjkJaaKCjJSdJQVFJKAAlVq2KjqCIoYinHy9HTkVT1FTYUJiPKeHqaOzjLSTNqDXztDSXNhcAJcdKKZo7GCAb6/QADf6lJS4GDCQAAHcBA"

PictureDown = 
"gBHJJGHA5MIgAEIe4AAAFhyFiDYiQBikVi0XjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nEhhgAEL5AgBhj/AAsncJoxABCCAD/BIcJCwUDBQYIAIgLhICBAQCEBgjHSEDBxcJERYAGRqbjIKKjYiKCwfDxUBByUjISQoKaqUi4eQfZKRFoFLw0fBycrMQQ1KreNgYablv4dQZyfjZWaoaKjEBzSxUZQzczOQJMS4SQraeapZiqKavHTNdQSFZLTZcUYmBrreorJSrAoDVBdZa2dpaUhwMYGAgAHcBA=="

https://exontrol.com/eximages.jsp


method Calc.Refresh ()
Refreshes the control.

Type Description

Use the Refresh method to refresh the control. The Buttons property is reinitialized. Call the
Refresh method if the user changes the decimal symbol.



method Calc.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description
Icon as Variant A long expression that indicates the icon's handle.

Index as Variant A long expression that indicates the index where icon is
inserted.

Return Description

Long A long expression that indicates the index of the icon in the
images collection.

Use the ReplaceIcon property to add, remove or replace an icon in the control's images
collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control. The ImageSize property defines the size
(width/height) of the icons within the control's Images collection.

The following sample shows how to add a new icon to control's images list:

 i = Calc1.ReplaceIcon( LoadPicture("d:\icons\help.ico").Handle), in this case the i specifies
the index where the icon was added

The following sample shows how to replace an icon into control's images list::

 i = Calc1.ReplaceIcon( LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.  

The following sample shows how to remove an icon from control's images list:

 Calc1.ReplaceIcon 0,  i, in this case the i must be the index of the icon that follows to be
removed

The following sample shows how to clear the control's icons collection:

 Calc1.ReplaceIcon 0,  -

 



method Calc.Reset ()
Resets the control

Type Description

Use the Reset method to reset the control. The Reset method erases the control's caption
as well as the internal stack of operators and operations. Use the Caption property to
access the control's caption. Use the Execute method to execute operations.



property Calc.ShowImageList as Boolean
Specifies whether the control's image list window is visible or hidden.

Type Description

Boolean A boolean expression that indicates whether the control's
images list window is visible or hidden.

The property has effect only at design time. Use the Images method to attach an image list
to the control. The ImageSize property defines the size (width/height) of the icons within the
control's Images collection.



property Calc.Template as String
Specifies the control's template.

Type Description
String A string expression that indicates the control's template.

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string ( template string ).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor. 

Place the control to your form or dialog. 
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control  on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence ( when Apply button is pressed ), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string ( template string ). 

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" ( newline characters ) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. ( Sample: Dim h, h1, h2 )
variable = property( list of arguments ) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name



of the object in the context. The "list or arguments" may include variables or values
separated by commas.  ( Sample: h = InsertItem(0,"New Child") )
property( list of arguments ) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method( list of arguments ) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property( list of arguments ).property( list of arguments ).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45  
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

 



property Calc.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously. 

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable ( the second
call of the TemplateDef ), and the Template call uses the var_Column variable ( as an object
), to call its Def property with the parameter 4. 

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column. 

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1



 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)



The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language ( Template
script of the Exontrols ), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" ( newline characters ) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. ( Sample: Dim h, h1, h2 )
variable = property( list of arguments ) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas.  ( Sample: h = InsertItem(0,"New Child") )
property( list of arguments ) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method( list of arguments ) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property( list of arguments ).property( list of arguments ).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45  
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please



make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

 

 



method Calc.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously. 

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols ), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" ( newline characters ) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. ( Sample: Dim h, h1, h2 )
variable = property( list of arguments ) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas.  ( Sample: h = InsertItem(0,"New Child") )
property( list of arguments ) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method( list of arguments ) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property( list of arguments ).property( list of arguments ).... The .(dot)
character splits the object from its property. For instance, the



Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45  
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.



property Calc.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control. (Currently, the property has no effect)



property Calc.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipDelay property specifies the time in ms that passes before the ToolTip appears.
(Currently, the property has no effect)



property Calc.Version as String
Retrieves the control's version.

Type Description
String A String expression that indicates the control's version.

The version property specifies the control's version.



CalcCombo object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag:  <object classid="clsid:...">)  using
the class identifier: {63BBFE5C-9D38-48D6-BD06-69CF1AE2F10C}. The object's program identifier is:
"ExCalc.CalcCombo". The /COM object module is: "ExCalc.dll"

The Exontrol's CalcCombo component provides calculator features in a drop down version.
The CalcCombo object supports properties and methods:

Name Description
Appearance Retrieves or sets the control's appearance
BackColor Specifies the control's background color.
ButtonHeight Specifies the height of the control's buttons.
Buttons Specifies the list of buttons in the control.
ButtonWidth Specifies the width of the control's buttons.
Caption Specifies the control's caption.
Copy Copies the control's content to the clipboard.
DropDown Shows the drop down portion of the control.
DropUp Hides the drop down portion of the control.
EditBackColor Specifies the control's edit background color.
EditForeColor Specifies the control's edit foreground color.

Enabled Retrieves or sets a value that indicates whether the
control is enabled ot disabled.

Execute Executes a command.
Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
hWnd Retrieves the control's window handle.
LabelHeight Specifies the label's height.

Message Retrieves or sets a value that indicates the control's
message.

Paste Inserts data from the clipboard.

PictureDown Specifies the picture that's displayed when the button is
down.

PictureUp Specifies the picture that's displayed when the button is
up.

Refresh Refreshes the control.



Reset Resets the control



property CalcCombo.Appearance as AppearanceEnum
Retrieves or sets the control's appearance

Type Description

AppearanceEnum An AppearanceEnum expression that indicates the
control's border style.

Use the Appearance property to define the control's border style. Use the Appearance
property to hide the control borders.



property CalcCombo.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that indicates the background color of
the control's drop down portion.

Use the BackColor property to specify the background color for the control's drop down
portion. Use the ForeColor property to specify the foreground color for the control's drop
down portion. Use the EditBackColor property to specify the background color of the
control's label. Use the EditForeColor property to specify the foreground color of the
control's label.



property CalcCombo.ButtonHeight as Long
Specifies the height of the control's buttons.

Type Description

Long A long expression that indicates the height of the buttons,
in pixels.

By default, the ButtonHeight property is 24 pixels. Use the ButtonHeight and ButtonWidth
property to specify the height and the width of the buttons in the control. Use the
PictureDown and PictureUp properties to specify the picture for the buttons. Use the
Buttons property to customize the control's matrix of buttons. Use the LabelHeight property
to specify the height of the control's label.



property CalcCombo.Buttons as String
Specifies the list of buttons in the control.

Type Description

String

A string expression that indicates the list of buttons being
displayed. The rows are separated by chr(13)+chr(10) (
vbCrLf ) sequence, and the buttons inside the row are
separated by ';' character.

The Buttons property specifies the buttons and the layout of the buttons in the control. Use
the PictureDown and PictureUp properties to specify the picture for the buttons. Use the
ButtonHeight and ButtonWidth property to specify the height and the width of the buttons in
the control. The ClickButton event occurs when the user clicks a button in the calculator.

Each button supports built-in HTML format like follows:

<b> ... </b> displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... </a> displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
<font face;size> ... </font> displays portions of text with a different font and/or
different size. For instance, the "<font Tahoma;12>bit</font>" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font
;12>bit</font>" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on

about:blank


the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text
<br> forces a line-break
<img>number[:width]</img> inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
<img>key[:width]</img> inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as &amp; ( & ), &lt; ( < ), &gt; ( > ),  &qout; ( " ) and &#number;
( the character with specified code ), For instance, the &#8364; displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
<b>bold</b> in HTML caption you can use &lt;b&gt;bold&lt;/b&gt;
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the <font face;size> to define a smaller or a larger font
to be displayed. For instance: "Text with <font ;7><off 6>subscript" displays the text
such as: Text with subscript The "Text with <font ;7><off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The <font>
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<font ;18><gra
FFFFFF;1;1>gradient-center</gra></font>" generates the following picture:



<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The <font> HTML tag can be used to define the
height of the font. For instance the "<font ;31><out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out></font>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The <font> HTML tag can be used to define the height of
the font.  For instance the "<font ;31><sha>shadow</sha></font>" generates the
following picture:

or  "<font ;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha></font>" gets:

By default, the Buttons property is "<fgcolor=0000FF><b>7</b></fgcolor>;
<fgcolor=0000FF><b>8</b></fgcolor>;<fgcolor=0000FF><b>9</b></fgcolor>;
<fgcolor=FF0000>/</fgcolor>;C\r\n<fgcolor=0000FF><b>4</b></fgcolor>;
<fgcolor=0000FF><b>5</b></fgcolor>;<fgcolor=0000FF><b>6</b></fgcolor>;
<fgcolor=FF0000>*</fgcolor>;1/x\r\n<fgcolor=0000FF><b>1</b></fgcolor>;
<fgcolor=0000FF><b>2</b></fgcolor>;<fgcolor=0000FF><b>3</b></fgcolor>;
<fgcolor=FF0000>-</fgcolor>;sqrt\r\n<fgcolor=0000FF><b>0</b></fgcolor>;
<fgcolor=0000FF><b>+/-</b></fgcolor>;<fgcolor=0000FF><b>.</b></fgcolor>;
<fgcolor=FF0000>+</fgcolor>;<fgcolor=000080><b>=</b></fgcolor>"

Use the Caption property to access the control's caption. Use the Execute method to
execute operations inside the control. 

The following sample adds a new button 'sin' and execute the trigonometric sin function
when 'sin' button is clicked:

Private Sub Form_Load()



    With CalcCombo1
        .Buttons = .Buttons + vbCrLf + "<b>sin<b>"
    End With
End Sub

Private Sub CalcCombo1_ClickButton(ByVal Button As String, Cancel As Variant)
    If (Button = "sin") Then
        With CalcCombo1
            .Execute Sin(.Caption)
        End With
    End If
End Sub

 



property CalcCombo.ButtonWidth as Long
Specifies the width of the control's buttons.

Type Description

Long A long expression that indicates the width of the buttons, in
pixels.

By default, the ButtonWidth property is 32 pixels. Use the ButtonHeight and ButtonWidth
property to specify the height and the width of the buttons in the control. Use the
PictureDown and PictureUp properties to specify the picture for the buttons. Use the
Buttons property to customize the control's matrix of buttons.



property CalcCombo.Caption as String
Specifies the control's caption.

Type Description
String A string expression that specifies the control's caption. 

Use the Caption property to access the control's caption. The Change event notifies your
application when the control's caption is changed. The Caption property erases the control's
operators and operation stack and replaces the control's caption. Use the Execute method
to execute operations. Use the Buttons property to assign a different matrix of digits and
operators to the control. By default, the Caption property replaces the control's stack (
operators and operations ) with giving caption. If the new caption just change the format of
the Caption property ( includes just HTML tags ), the new format is applied to the control's
label and control's stack ( operators and operations ) is not altered. For instance, let's say
that the control's label displays the number 78, and during the Change event your
application change the Caption property to "<sha ;;0><b>" + Caption. In this case, the
content of the Caption is not change, instead just the new HTML format is applied to the
control's label, so operations on the calculator can continue.

The following sample displays the control's caption as soon as user types characters in the
control:

Private Sub CalcCombo1_Change()
    With CalcCombo1
        Debug.Print .Caption
    End With
End Sub 

The Caption property supports built-in HTML format like follows:

<b> ... </b> displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... </a> displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
<font face;size> ... </font> displays portions of text with a different font and/or

about:blank


different size. For instance, the "<font Tahoma;12>bit</font>" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font
;12>bit</font>" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text
<br> forces a line-break
<img>number[:width]</img> inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
<img>key[:width]</img> inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as &amp; ( & ), &lt; ( < ), &gt; ( > ),  &qout; ( " ) and &#number;
( the character with specified code ), For instance, the &#8364; displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
<b>bold</b> in HTML caption you can use &lt;b&gt;bold&lt;/b&gt;
<off offset> ... </off> defines the vertical offset to display the text/element. The offset



parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the <font face;size> to define a smaller or a larger font
to be displayed. For instance: "Text with <font ;7><off 6>subscript" displays the text
such as: Text with subscript The "Text with <font ;7><off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The <font>
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<font ;18><gra
FFFFFF;1;1>gradient-center</gra></font>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The <font> HTML tag can be used to define the
height of the font. For instance the "<font ;31><out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out></font>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The <font> HTML tag can be used to define the height of
the font.  For instance the "<font ;31><sha>shadow</sha></font>" generates the
following picture:

or  "<font ;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha></font>" gets:

The following sample displays the 'Cannot execute the operation' string:



CalcCombo1.Caption = "Cannot <b>execute</b> the operation."



method CalcCombo.Copy ()
Copies the control's content to the clipboard.

Type Description

 



method CalcCombo.DropDown ()
Shows the drop down portion of the control.

Type Description

Use the DropDown method to show the drop down portion of the control. Use the DropUp
method to hide the drop down portion of the control.

The following sample shows the drop down portion of the control:

Private Sub CalcCombo1_KeyDown(KeyCode As Integer, Shift As Integer)
    If (KeyCode = vbKeyF2) Then
        With CalcCombo1
            .DropDown
        End With
    End If
End Sub 



method CalcCombo.DropUp ()
Hides the drop down portion of the control.

Type Description

Use the DropUp method to hide the drop down portion of the control. Use the DropDown
method to show the drop down portion of the control.

The following sample shows the drop down portion of the control:

Private Sub CalcCombo1_KeyDown(KeyCode As Integer, Shift As Integer)
    If (KeyCode = vbKeyF2) Then
        With CalcCombo1
            .DropUp
        End With
    End If
End Sub 

 



property CalcCombo.EditBackColor as Color
Specifies the control's edit background color.

Type Description

Color A color expression that indicates the background color of
of the control's label.

Use the EditBackColor property to specify the background color of the control's label. Use
the EditForeColor property to specify the foreground color of the control's label. Use the
ForeColor property to specify the foreground color for the control's drop down portion. Use
the BackColor property to specify the background color for the control's drop down portion.



property CalcCombo.EditForeColor as Color
Specifies the control's edit foreground color.

Type Description

Color A color expression that indicates the foreground color of of
the control's label.

Use the EditForeColor property to specify the foreground color of the control's label. Use
the EditBackColor property to specify the background color of the control's label. Use the
ForeColor property to specify the foreground color for the control's drop down portion. Use
the BackColor property to specify the background color for the control's drop down portion.



property CalcCombo.Enabled as Boolean
Retrieves or sets a value that indicates whether the control is enabled ot disabled.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

Use the Enabled property to enable or disable the control.



method CalcCombo.Execute (Command as String)
Executes a command.

Type Description

Command as String A string expression that indicates the newly control's
caption or the operation being executed.

Use the Execute method to execute commands in the control. The Execute method adds
operations and operators to the control's stack. The Execute method does not clear the
control's stack. The Caption property erases the control's operators and operation stack
and replaces the control's caption. The Change event notifies your application when the
control's caption is changed.

The following sample multiplies two numbers:

With CalcCombo1
    .Execute "12.123"
    .Execute "*"
    .Execute "-123"
    .Execute "="
End With

 



property CalcCombo.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object being used.

Use the Font property to specify the control's font.



property CalcCombo.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates the foreground color of
the control's drop down portion.

Use the ForeColor property to specify the foreground color for the control's drop down
portion. Use the BackColor property to specify the background color for the control's drop
down portion. Use the EditBackColor property to specify the background color of the
control's label. Use the EditForeColor property to specify the foreground color of the
control's label.



property CalcCombo.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long value that indicates the handle of the control's
window.

The Microsoft Windows operating environment identifies each form and control in an
application by assigning it a handle, or hWnd. The hWnd property is used with Windows API
calls. Many Windows operating environment functions require the hWnd of the active
window as an argument.



property CalcCombo.LabelHeight as Long
Specifies the label's height.

Type Description

Long A long expression that indicates the height of the control's
label.

By default, the LabelHeight property is 21 pixels. Use the LabelHeight property to specify
the control's height. The height of the control's drop down portion is automatically computed
based on the ButtonWidth, ButtonHeight and Buttons properties.



property CalcCombo.Message(Msg as MessageEnum) as String
Retrieves or sets a value that indicates the control's message.

Type Description

Msg as MessageEnum A MessageEnum expression that indicates the value being
changed

String A string expression that indicates the message being
changed. It supports built-in HTML format.

Use the Message property to customize the string being displayed by the control when an
error occurs. 

The following sample changes the "Cannot divide by zero.", that's displayed when the
calculator performs a division by zero:

CalcCombo1.Message(exCannotDivideByZero) = "Divide by zero."

The Message property supports built-in HTML format like follows:

<b> ... </b> displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... </a> displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.
<font face;size> ... </font> displays portions of text with a different font and/or
different size. For instance, the "<font Tahoma;12>bit</font>" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "<font
;12>bit</font>" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-

about:blank


line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text
<br> forces a line-break
<img>number[:width]</img> inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
<img>key[:width]</img> inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as &amp; ( & ), &lt; ( < ), &gt; ( > ),  &qout; ( " ) and &#number;
( the character with specified code ), For instance, the &#8364; displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a
known letter or a #character and a digit. For instance if you want to display
<b>bold</b> in HTML caption you can use &lt;b&gt;bold&lt;/b&gt;
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the <font face;size> to define a smaller or a larger font
to be displayed. For instance: "Text with <font ;7><off 6>subscript" displays the text
such as: Text with subscript The "Text with <font ;7><off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The <font>
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or



blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<font ;18><gra
FFFFFF;1;1>gradient-center</gra></font>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The <font> HTML tag can be used to define the
height of the font. For instance the "<font ;31><out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out></font>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The <font> HTML tag can be used to define the height of
the font.  For instance the "<font ;31><sha>shadow</sha></font>" generates the
following picture:

or  "<font ;31><sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha></font>" gets:



method CalcCombo.Paste ()
Inserts data from the clipboard.

Type Description

 



property CalcCombo.PictureDown as Variant
Specifies the picture that's displayed when the button is down.

Type Description

Variant

A Picture object that indicates the cell's picture. ( A Picture
object implements IPicture interface ), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

Use the PictureDown and PictureUp properties to specify the picture for the buttons. 

The following sample assigns different images  to the buttons:

PictureUp = 
"gBHJJGHA5MIgAEIe4AAAFhyFiC9fa9bDbbABjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nE5nU7nkihgAEL5AgBhj/AAsn8JpRABCZAD/BIcJCwUDBQYIAIILDIWChYaHAACEh8JCxMTERIVGYyXiIeAfQCPEBDRQMbJRUBCRoaHIaHiJaSiYiSGBjZScBKTMpLRAdNreNioWSgZydBZ7CT8BJUdBAUQ7RoODrJKjkJaaKCjJSdJQVFJKAAlVq2KjqCIoYinHy9HTkVT1FTYUJiPKeHqaOzjLSTNqDXztDSXNhcAJcdKKZo7GCAb6/QADf6lJS4GDCQAAHcBA"

PictureDown = 
"gBHJJGHA5MIgAEIe4AAAFhyFiDYiQBikVi0XjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nEhhgAEL5AgBhj/AAsncJoxABCCAD/BIcJCwUDBQYIAIgLhICBAQCEBgjHSEDBxcJERYAGRqbjIKKjYiKCwfDxUBByUjISQoKaqUi4eQfZKRFoFLw0fBycrMQQ1KreNgYablv4dQZyfjZWaoaKjEBzSxUZQzczOQJMS4SQraeapZiqKavHTNdQSFZLTZcUYmBrreorJSrAoDVBdZa2dpaUhwMYGAgAHcBA=="

 

https://exontrol.com/eximages.jsp


property CalcCombo.PictureUp as Variant
Specifies the picture that's displayed when the button is up.

Type Description

Variant

A Picture object that indicates the cell's picture. ( A Picture
object implements IPicture interface ), a string expression
that indicates the base64 encoded string that holds a
picture object. Use the eximages tool to save your picture
as base64 encoded format.

Use the PictureDown and PictureUp properties to specify the picture for the buttons. 

The following sample assigns different images  to the buttons:

PictureUp = 
"gBHJJGHA5MIgAEIe4AAAFhyFiC9fa9bDbbABjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nE5nU7nkihgAEL5AgBhj/AAsn8JpRABCZAD/BIcJCwUDBQYIAIILDIWChYaHAACEh8JCxMTERIVGYyXiIeAfQCPEBDRQMbJRUBCRoaHIaHiJaSiYiSGBjZScBKTMpLRAdNreNioWSgZydBZ7CT8BJUdBAUQ7RoODrJKjkJaaKCjJSdJQVFJKAAlVq2KjqCIoYinHy9HTkVT1FTYUJiPKeHqaOzjLSTNqDXztDSXNhcAJcdKKZo7GCAb6/QADf6lJS4GDCQAAHcBA"

PictureDown = 
"gBHJJGHA5MIgAEIe4AAAFhyFiDYiQBikVi0XjEZjUbjkdj0fkEhkUjkklk0nlEplUrlktl0vmExmUzmk1m03nEhhgAEL5AgBhj/AAsncJoxABCCAD/BIcJCwUDBQYIAIgLhICBAQCEBgjHSEDBxcJERYAGRqbjIKKjYiKCwfDxUBByUjISQoKaqUi4eQfZKRFoFLw0fBycrMQQ1KreNgYablv4dQZyfjZWaoaKjEBzSxUZQzczOQJMS4SQraeapZiqKavHTNdQSFZLTZcUYmBrreorJSrAoDVBdZa2dpaUhwMYGAgAHcBA=="

 

https://exontrol.com/eximages.jsp


method CalcCombo.Refresh ()
Refreshes the control.

Type Description

Refreshes the control. The Buttons property is reinitialized. Call the Refresh method if the
user changes the decimal symbol.



method CalcCombo.Reset ()
Resets the control

Type Description

 



CalcCombo events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag:  <object classid="clsid:...">)  using
the class identifier: {63BBFE5C-9D38-48D6-BD06-69CF1AE2F10C}. The object's program identifier is:
"ExCalc.CalcCombo". The /COM object module is: "ExCalc.dll"

The CalcCombo component supports the following events:

Name Description
Change Occurs when the control's caption is changed.
ClickButton Occurs when the user clicks the control's button.
Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.



event Change ()
Occurs when the control's caption is changed.

Type Description

The Change event notifies your application when the control's caption is changed. Use the
Caption property to access the control's caption. Use the Execute method to execute a
command. The KeyDown event occurs when the user presses a key while an object has the
focus. By default, the Caption property replaces the control's stack ( operators and
operations ) with giving caption. If the new caption just change the format of the Caption
property ( includes just HTML tags ), the new format is applied to the control's label and
control's stack ( operators and operations ) is not altered. For instance, let's say that the
control's label displays the number 78, and during the Change event your application change
the Caption property to "<sha ;;0><b>" + Caption. In this case, the content of the Caption is
not change, instead just the new HTML format is applied to the control's label, so
operations on the calculator can continue.

The following sample displays the control's caption as soon as user types characters in the
control:

Private Sub CalcCombo1_Change()
    With CalcCombo1
        Debug.Print .Caption
    End With
End Sub
 



event ClickButton (Button as String, Cancel as Variant)
Occurs when the user clicks the control's button.

Type Description

Button as String
A string expression that indicates the name of the being
clicked. The Button parameter does not include the HTML
format.

Cancel as Variant A boolean expression that indicates whether the default
operation is executed or canceled.

Use the ClickButton event notifies your application that the user clicks or presses a button.
Use the ClickButton event to handle custom operations in the control. Use the Buttons
property to append new buttons to the control. Use the Execute method to execute
operations.

The following VB6 sample adds a new button 'sin' and execute the trigonometric sin function
when 'sin' button is clicked:

Private Sub Form_Load()
    With CalcCombo1
        .Buttons = .Buttons + vbCrLf + "<b>sin<b>"
    End With
End Sub

Private Sub CalcCombo1_ClickButton(ByVal Button As String, Cancel As Variant)
    If (Button = "sin") Then
        With CalcCombo1
            .Execute Sin(.Caption)
        End With
    End If
End Sub

The following VB.NET sample adds a new button 'sin' and execute the trigonometric sin
function when 'sin' button is clicked:

Private Sub Excalc1_ClickButton(ByVal sender As System.Object, ByVal Button As 
System.String, ByRef Cancel As System.Boolean) Handles Excalc1.ClickButton
    If (Button = "sin") Then
        With Excalc1



            .Execute(Math.Sin(.Caption))
        End With
    End If
    If (Button = "cos") Then
        With Excalc1
            .Execute(Math.Cos(.Caption))
        End With
    End If
End Sub

The following C# sample adds a new button 'sin' and execute the trigonometric sin function
when 'sin' button is clicked:

private void excalc1_ClickButton(object sender, string Button, ref bool Cancel)
{
    if (Button == "sin") 
        excalc1.Execute(Math.Sin(Convert.ToDouble(excalc1.Caption)).ToString());
    else if (Button == "cos")
        excalc1.Execute(Math.Cos(Convert.ToDouble(excalc1.Caption)).ToString());
}



event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event ( such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event.  

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution. 

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event ( each event has an unique identifier
and it is static, defined in the control's type library ). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print excalc1.EventParam(-2).toString();
}

This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606( 1 , 0 , 145 , 36 )" VT_BSTR
"BarParentChange/125( 192998632 , 'B' , 192999592 , =false )" VT_BSTR
"BeforeDrawPart/54( 2 , -1962866148 , =0 , =0 , =0 , =0 , =false )" VT_BSTR



"AfterDrawPart/55( 2 , -1962866148 , 0 , 0 , 0 , 0 )" VT_BSTR
"MouseMove/-606( 1 , 0 , 145 , 35 )" VT_BSTR

Each line indicates an event, and the following information is provided:  the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler. 

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
    ;
    if ( _EventID == 125 ) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem 
as HITEM, Cancel as Boolean) */
        excalc1.EventParam( 3 /*Cancel*/, COMVariant::createFromBoolean(true) );
}

The code checks if the BarParentChange ( _EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value. 

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
    ;
    if ( _EventID == 125 ) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem 
as HITEM, Cancel as Boolean) */
        if ( !excalc1.Items().EnableItem( excalc1.EventParam( 2 /*NewItem*/ ) ) )
            excalc1.EventParam( 3 /*Cancel*/, COMVariant::createFromBoolean(true) );
}



In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control



event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

The following sample shows the drop down portion of the control:

Private Sub CalcCombo1_KeyDown(KeyCode As Integer, Shift As Integer)
    If (KeyCode = vbKeyF2) Then
        With CalcCombo1
            .DropDown
        End With
    End If
End Sub 

 



event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.



event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.



Calc events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag:  <object classid="clsid:...">)  using
the class identifier: {63BBFE5C-9D38-48D6-BD06-69CF1AE2F10C}. The object's program identifier is:
"ExCalc.CalcCombo". The /COM object module is: "ExCalc.dll"

The Calc component supports the following events:

Name Description
Change Occurs when the control's caption is changed.

Click Occurs when the user presses and then releases the left
mouse button over the control.

ClickButton Occurs when the user clicks the control's button.

DblClick Occurs when the user dblclk the left mouse button over an
object.

Event Notifies the application once the control fires an event.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.



C#

VB

private void Change(object sender)
{
}

Private Sub Change(ByVal sender As System.Object) Handles Change
End Sub

C#

C++

C++
Builder

private void Change(object sender, EventArgs e)
{
}

void OnChange()
{
}

void __fastcall Change(TObject *Sender)
{
}

event Change ()
Occurs when the control's caption is changed.

Type Description

The Change event notifies your application when the control's caption is changed. Use the
Caption property to access the control's caption. Use the Execute method to execute a
command. The KeyDown event occurs when the user presses a key while an object has the
focus. By default, the Caption property replaces the control's stack ( operators and
operations ) with giving caption. If the new caption just change the format of the Caption
property ( includes just HTML tags ), the new format is applied to the control's label and
control's stack ( operators and operations ) is not altered. For instance, let's say that the
control's label displays the number 78, and during the Change event your application change
the Caption property to "<sha ;;0><b>" + Caption. In this case, the content of the Caption is
not change, instead just the new HTML format is applied to the control's label, so
operations on the calculator can continue. 

Syntax for Change event, /NET version, on:

Syntax for Change event, /COM version, on:



Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Change(ASender: TObject; );
begin
end;

procedure Change(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Change()
end event Change

Private Sub Change(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Change
End Sub

Private Sub Change()
End Sub

Private Sub Change()
End Sub

LPARAMETERS nop

PROCEDURE OnChange(oCalc)
RETURN

Java…

VBSc…

<SCRIPT EVENT="Change()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Change()
End Function
</SCRIPT>

Syntax for Change event, /COM version (others), on:



Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComChange 
 Forward Send OnComChange 
End_Procedure

METHOD OCX_Change() CLASS MainDialog
RETURN NIL

void onEvent_Change()
{
}

function Change as v ()
end function

function nativeObject_Change()
return

The following sample displays the control's caption as soon as user types characters in the
control:

Private Sub Calc1_Change()
    With Calc1
        Debug.Print .Caption
    End With
End Sub

The following sample displays a different format for the control's label:

Private Sub Calc1_Change()
    With Calc1
        .Caption = "<sha ;;0><b>" & .Caption
    End With
End Sub

The following sample displays a different format for the control's label, when negative
numbers are displayed

Private Sub Calc1_Change()
    With Calc1



        Dim format As String
        format = "<sha ;;0><b>"
        If (.Caption < 0) Then
            format = format & "<fgcolor FF0000>"
        End If
        .Caption = format & .Caption
    End With
End Sub

 



C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject; );
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

The Click event is fired when the user releases the left mouse button over the control. Use
a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click event, MouseDown and MouseUp
events lets you distinguish between the left, right, and middle mouse buttons. You can also
write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers. Use the ClickButton event to notify your application when a button is clicked or
pressed.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:



Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oCalc)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick 
 Forward Send OnComClick 

Syntax for Click event, /COM version (others), on:



X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return



C#

VB

private void ClickButton(object sender,string Button,ref object Cancel)
{
}

Private Sub ClickButton(ByVal sender As System.Object,ByVal Button As 
String,ByRef Cancel As Object) Handles ClickButton
End Sub

C#

C++

C++
Builder

private void ClickButton(object sender, 
AxEXCALCLib._ICalcComboEvents_ClickButtonEvent e)
{
}

void OnClickButton(LPCTSTR Button,VARIANT FAR* Cancel)
{
}

void __fastcall ClickButton(TObject *Sender,BSTR Button,Variant * Cancel)
{
}

event ClickButton (Button as String, Cancel as Variant)
Occurs when the user clicks the control's button.

Type Description

Button as String
A string expression that indicates the name of the being
clicked. The Button parameter does not include the HTML
format.

Cancel as Variant A boolean expression that indicates whether the default
operation is executed or canceled.

Use the ClickButton event notifies your application that the user clicks or presses a button.
Use the ClickButton event to handle custom operations in the control. Use the Buttons
property to append new buttons to the control. Use the Execute method to execute
operations.

Syntax for ClickButton event, /NET version, on:

Syntax for ClickButton event, /COM version, on:



Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickButton(ASender: TObject; Button : WideString;var Cancel : 
OleVariant);
begin
end;

procedure ClickButton(sender: System.Object; e: 
AxEXCALCLib._ICalcComboEvents_ClickButtonEvent);
begin
end;

begin event ClickButton(string Button,any Cancel)
end event ClickButton

Private Sub ClickButton(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcComboEvents_ClickButtonEvent) Handles ClickButton
End Sub

Private Sub ClickButton(ByVal Button As String,Cancel As Variant)
End Sub

Private Sub ClickButton(ByVal Button As String,Cancel As Variant)
End Sub

LPARAMETERS Button,Cancel

PROCEDURE OnClickButton(oCalc,Button,Cancel)
RETURN

Java…

VBSc…

<SCRIPT EVENT="ClickButton(Button,Cancel)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function ClickButton(Button,Cancel)
End Function
</SCRIPT>

Syntax for ClickButton event, /COM version (others), on:



Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComClickButton String llButton Variant llCancel
 Forward Send OnComClickButton llButton llCancel
End_Procedure

METHOD OCX_ClickButton(Button,Cancel) CLASS MainDialog
RETURN NIL

void onEvent_ClickButton(str _Button,COMVariant /*variant*/ _Cancel)
{
}

function ClickButton as v (Button as C,Cancel as A)
end function

function nativeObject_ClickButton(Button,Cancel)
return

The following sample adds a new button 'sin' and execute the trigonometric sin function
when 'sin' button is clicked:

Private Sub Form_Load()
    With Calc1
        .Buttons = .Buttons + vbCrLf + "<b>sin<b>"
    End With
End Sub

Private Sub Calc1_ClickButton(ByVal Button As String, Cancel As Variant)
    If (Button = "sin") Then
        With Calc1
            .Execute Sin(.Caption)
        End With
    End If
End Sub

 



C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X 
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

C++
Builder

private void DblClick(object sender, AxEXCALCLib._ICalcEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when the user dbl clicks on the control. Use the DblClick event to
notify your application that a cell has been double-clicked.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:



Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e: 
AxEXCALCLib._ICalcEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oCalc,Shift,X,Y)
RETURN

Java…

VBSc…

<SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function

Syntax for DblClick event, /COM version (others), on:



Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS 
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Calc.1::OLE_XPOS_PIXELS,Y as 
OLE::Exontrol.Calc.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return



C#

VB

private void Event(object sender,int EventID)
{
}

Private Sub Event(ByVal sender As System.Object,ByVal EventID As Integer) 
Handles Event
End Sub

C#

C++

C++
Builder

Delphi

private void Event(object sender, AxEXCALCLib._ICalcComboEvents_EventEvent e)
{
}

void OnEvent(long EventID)
{
}

void __fastcall Event(TObject *Sender,long EventID)
{
}

procedure Event(ASender: TObject; EventID : Integer);
begin
end;

event Event (EventID as Long)
Notifies the application once the control fires an event.

Type Description

EventID as Long

A Long expression that specifies the identifier of the event.
Use the EventParam(-2) to display entire information
about fired event ( such as name, identifier, and properties
).

The Event notification occurs ANY time the control fires an event. 

Syntax for Event event, /NET version, on:

Syntax for Event event, /COM version, on:



Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure Event(sender: System.Object; e: AxEXCALCLib._ICalcComboEvents_EventEvent);
begin
end;

begin event Event(long EventID)
end event Event

Private Sub Event(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcComboEvents_EventEvent) Handles Event
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

Private Sub Event(ByVal EventID As Long)
End Sub

LPARAMETERS EventID

PROCEDURE OnEvent(oCalc,EventID)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Event(EventID)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Event(EventID)
End Function
</SCRIPT>

Procedure OnComEvent Integer llEventID
 Forward Send OnComEvent llEventID

Syntax for Event event, /COM version (others), on:



X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Event(EventID) CLASS MainDialog
RETURN NIL

void onEvent_Event(int _EventID)
{
}

function Event as v (EventID as N)
end function

function nativeObject_Event(EventID)
return

This is useful for X++ language, which does not support event with parameters passed by
reference.

In X++ the "Error executing code: FormActiveXControl (data source), method ... called with
invalid parameters" occurs when handling events that have parameters passed by
reference. Passed by reference, means that in the event handler, you can change the value
for that parameter, and so the control will takes the new value, and use it. The X++ is NOT
able to handle properly events with parameters by reference, so we have the solution. 

The solution is using and handling the Event notification and EventParam method., instead
handling the event that gives the "invalid parameters" error executing code.

Let's presume that we need to handle the BarParentChange event to change the _Cancel
parameter from false to true, which fires the "Error executing code: FormActiveXControl
(data source), method onEvent_BarParentChange called with invalid parameters." We need
to know the identifier of the BarParentChange event ( each event has an unique identifier
and it is static, defined in the control's type library ). If you are not familiar with what a type
library means just handle the Event of the control as follows:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
 print excalc1.EventParam(-2).toString();
}



This code allows you to display the information for each event of the control being fired as
in the list bellow:

"MouseMove/-606( 1 , 0 , 145 , 36 )" VT_BSTR
"BarParentChange/125( 192998632 , 'B' , 192999592 , =false )" VT_BSTR
"BeforeDrawPart/54( 2 , -1962866148 , =0 , =0 , =0 , =0 , =false )" VT_BSTR
"AfterDrawPart/55( 2 , -1962866148 , 0 , 0 , 0 , 0 )" VT_BSTR
"MouseMove/-606( 1 , 0 , 145 , 35 )" VT_BSTR

Each line indicates an event, and the following information is provided:  the name of the
event, its identifier, and the list of parameters being passed to the event. The parameters
that starts with = character, indicates a parameter by reference, in other words one that
can changed during the event handler. 

Now, we can see that the identifier for the BarParentChange event is 125, so we need to
handle the Event event as:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{
    ;
    if ( _EventID == 125 ) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem 
as HITEM, Cancel as Boolean) */
        excalc1.EventParam( 3 /*Cancel*/, COMVariant::createFromBoolean(true) );
}

The code checks if the BarParentChange ( _EventID == 125) event is fired, and changes
the third parameter of the event to true. The definition for BarParentChange event can be
consulted in the control's documentation or in the ActiveX explorer. So, anytime you need to
access the original parameters for the event you should use the EventParam method that
allows you to get or set a parameter. If the parameter is not passed by reference, you can
not change the parameter's value. 

Now, let's add some code to see a complex sample, so let's say that we need to prevent
moving the bar from an item to any disabled item. So, we need to specify the Cancel
parameter as not Items.EnableItem(NewItem), in other words cancels if the new parent is
disabled. Shortly the code will be:

// Notifies the application once the control fires an event.
void onEvent_Event(int _EventID)
{



    ;
    if ( _EventID == 125 ) /*event BarParentChange (Item as HITEM, Key as Variant, NewItem 
as HITEM, Cancel as Boolean) */
        if ( !excalc1.Items().EnableItem( excalc1.EventParam( 2 /*NewItem*/ ) ) )
            excalc1.EventParam( 3 /*Cancel*/, COMVariant::createFromBoolean(true) );
}

In conclusion, anytime the X++ fires the "invalid parameters." while handling an event, you
can use and handle the Event notification and EventParam methods of the control



C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As 
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender, 
AxEXCALCLib._ICalcComboEvents_KeyDownEvent e)

event KeyDown (KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:



C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e: 
AxEXCALCLib._ICalcComboEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcComboEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oCalc,KeyCode,Shift)
RETURN



Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:



C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short) 
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender, 
AxEXCALCLib._ICalcComboEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description
KeyAscii as Integer An integer that returns a standard numeric ANSI keycode

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:



Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e: 
AxEXCALCLib._ICalcComboEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcComboEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oCalc,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:



Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return



C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal 
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender, 
AxEXCALCLib._ICalcComboEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:



Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e: 
AxEXCALCLib._ICalcComboEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcComboEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oCalc,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:



Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return



C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As 
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles 
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender, 
AxEXCALCLib._ICalcEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:



C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X : 
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e: 
AxEXCALCLib._ICalcEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As 
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oCalc,Button,Shift,X,Y)
RETURN



Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX 
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as 
OLE::Exontrol.Calc.1::OLE_XPOS_PIXELS,Y as 
OLE::Exontrol.Calc.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:



C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As 
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles 
MouseMoveEvent
End Sub

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its borders. Use the ButtonFromPoint property to get
the button from the cursor.

The following sample displays the button from cursor:

Private Sub Calc1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
    With Calc1
        Debug.Print .ButtonFromPoint(X / Screen.TwipsPerPixelX, Y / Screen.TwipsPerPixelY)
    End With
End Sub

Syntax for MouseMove event, /NET version, on:



C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

private void MouseMoveEvent(object sender, 
AxEXCALCLib._ICalcEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X : 
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e: 
AxEXCALCLib._ICalcEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As 
Long,ByVal Y As Long)
End Sub

Syntax for MouseMove event, /COM version, on:



VFP

Xbas…

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oCalc,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX 
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as 
OLE::Exontrol.Calc.1::OLE_XPOS_PIXELS,Y as 
OLE::Exontrol.Calc.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:



C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As 
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles 
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender, 
AxEXCALCLib._ICalcEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:



C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X : 
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e: 
AxEXCALCLib._ICalcEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As 
AxEXCALCLib._ICalcEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As 
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oCalc,Button,Shift,X,Y)
RETURN



Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX 
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as 
OLE::Exontrol.Calc.1::OLE_XPOS_PIXELS,Y as 
OLE::Exontrol.Calc.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:


	Information
	How to get support?
	Calc
	Appearance property
	AttachTemplate method
	BackColor property
	BeginUpdate method
	ButtonFromPoint property (readonly)
	ButtonHeight property
	Buttons property
	ButtonWidth property
	CalcHeight property (readonly)
	CalcWidth property (readonly)
	Caption property
	Copy method
	DecimalSymbol property (readonly)
	EditBackColor property
	EditForeColor property
	EditHeight property
	Enabled property
	EndUpdate method
	EventParam property
	Execute method
	ExecuteTemplate method
	Font property
	ForeColor property
	HTMLPicture property
	hWnd property (readonly)
	Images method
	ImageSize property
	Message property
	Paste method
	Picture property
	PictureDisplay property
	PictureDown property
	PictureUp property
	Refresh method
	ReplaceIcon method
	Reset method
	ShowImageList property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipPopDelay property
	Version property

	CalcCombo
	Appearance property
	BackColor property
	ButtonHeight property
	Buttons property
	ButtonWidth property
	Caption property
	Copy method
	DropDown method
	DropUp method
	EditBackColor property
	EditForeColor property
	Enabled property
	Execute method
	Font property
	ForeColor property
	hWnd property (readonly)
	LabelHeight property
	Message property
	Paste method
	PictureDown property
	PictureUp property
	Refresh method
	Reset method

	CalcCombo events
	Change event
	ClickButton event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event

	Calc events
	Change event
	Click event
	ClickButton event
	DblClick event
	Event event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event


