
 ExButton

The ExButton component defines a command button. A command button on a form can
start an action or a set of actions. For example, you could create a command button that
opens another form. The control provides predefined button skins for Windows XP,
Windows 95/98, and Mac 8.x buttons. Create your own skins for your buttons in minutes,
using a WYSYWG skin builder. The ability to specify everything that control needs like
graphical objects, transparent skins, HTML captions as simple text makes the exButton one
of the best. The exButton control easily replaces the Standard Windows button by
supporting most of the same properties, methods and events. In addition, you have
complete control over how the button is displayed. The skin method, in it's simplest form,
uses a single graphic file assigned to the client area of the button. By using a collection of
objects laid over the graphic, it is possible to define which sections of the graphic will be
used as borders, corners and other possible elements, fixing them to their proper position
regardless of the size of the button.

Features include:

WYSWYG Skin Builder (ability to define your button faces in minutes)
WYSWYG Template/Layout Editor support
Unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the object's background
Horizontal, Vertical, Rotate, Mirror support
Rectangular or Round/Circular button support
Predefined skins for Windows XP, Windows 95/98, and Mac 8.x buttons, Windows
XP not required
Ability to specify HTML multiple lines caption.
Multiple-Lines HTML Tooltip support
Transparent color support
Focusable support
Ability to specify the control's background color without changing the visual appearance
Ability to build toolbars with your own style
Ability to assign different skins for different button's states
Ability to assign icons, images, transparent images to the control using BASE64
encoded strings
Text Decorations support, like gradient, outlined characters, shadow, and so on
Ability to align the caption or the image anywhere on the button's client area
Ability to specify a picture on the button's background
Ability to resize the button without losing the corners
Normal, Push-Like, Check Box, Custom modes support
Hot, Focus state support

Ž ExButton is a trademark of Exontrol. All Rights Reserved.

How to get support?

To keep your business applications running, you need support you can count on.

Here are few hints what to do when you're stuck on your programming:

Check out the samples - they are here to provide some quick info on how things should
be done
Check out the how-to questions using the eXHelper tool
Check out the help - includes documentation for each method, property or event
Check out if you have the latest version, and if you don't have it send an update
request here.
Submit your problem(question) here.

Don't forget that you can contact our development team if you have ideas or requests for
new components, by sending us an e-mail at support@exontrol.com (please include the
name of the product in the subject, ex: exgrid) . We're sure our team of developers will try
to find a way to make you happy - and us too, since we helped.

Regards,
Exontrol Development Team

https://www.exontrol.com

https://exontrol.com/exhelper.jsp
https://exontrol.com/update.jsp
https://exontrol.com/techsupport.jsp
https://www.exontrol.com

constants AlignmentEnum
Specifies the image or caption alignment. Use the Alignment property to change the
horizontal alignment for the caption.Use the ImageAlignment property to change the
horizontal alignment for the image. Use the VFit, HFit, IncClientSide properties to adjust the
control's client area and to organize the image and the caption positions in the control's
client area

Name Value Description
exLeft 0 The object is left aligned.
exCenter 1 The object is centered.
exRight 2 The object is right aligned.

constants BackgroundExtPropertyEnum
The BackgroundExtPropertyEnum type specifies the UI properties of the part of the EBN
you can access/change at runtime. The BackgroundExt property specifies the EBN String
format to be displayed on the object's background. The BackgroundExtValue property
access the value of the giving property for specified part of the EBN. The
BackgroundExtPropertyEnum type supports the following values:

Name Value Description

exToStringExt 0

Specifies the part's ToString representation. The
BackgroundExt property specifies the EBN String
format to be displayed on the object's background.
The Exontrol's eXButton WYSWYG Builder helps
you to generate or view the EBN String Format, in
the To String field.

Sample:

"client(right[18]
(bottom[18,pattern=6,frame=0,framethick]),bottom[48,align=0x11]),left[18]
(bottom[18,pattern=6,frame=0,framethick])"

generates the following layout:

where it is applied to an object it looks as follows:

(String expression, read-only).

https://exontrol.com/exbutton.jsp

exBackColorExt 1

Indicates the background color / EBN color to be
shown on the part of the object. Sample: 255
indicates red, RGB(0,255,0) green, or 0x1000000.

(Color/Numeric expression, The last 7 bits in the
high significant byte of the color indicate the
identifier of the skin being used)

Specifies the position/size of the object, depending
on the object's anchor. The syntax of the
exClientExt is related to the exAnchorExt value. For
instance, if the object is anchored to the left side of
the parent (exAnchorExt = 1), the exClientExt
specifies just the width of the part in
pixels/percents, not including the position. In case,
the exAnchorExt is client, the exClientExt has no
effect.

Based on the exAnchorExt value the exClientExt is:

0 (none, the object is not anchored to any
side), the format of the exClientExt is
"left,top,width,height" (as string) where
(left,top) margin indicates the position where
the part starts, and the (width,height) pair
specifies its size. The left, top, width or height
could be any expression (+,-,/ or *) that can
include numbers associated with pixels or
percents. For instance: "25%,25%,50%,50%"
indicates the middle of the parent object, and
so when the parent is resized the client is
resized accordingly. The "50%-8,50%-8,16,16"
value specifies that the size of the object is
always 16x16 pixels and positioned on the
center of the parent object.
1 (left, the object is anchored to left side of
the parent), the format of the exClientExt is
width (string or numeric) where width
indicates the width of the object in pixels,
percents or a combination of them using +,-,/
or * operators. For instance: "50%" indicates

exClientExt 2

the half of the parent object, and so when the
parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
2 (right, the object is anchored to right side of
the parent object), the format of the
exClientExt is width (string or numeric)
where width indicates the width of the object in
pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
3 (client, the object takes the full available
area of the parent), the exClientExt has no
effect.
4 (top, the object is anchored to the top side
of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.
5 (bottom, the object is anchored to bottom
side of the parent object), the format of the
exClientExt is height (string or numeric)
where height indicates the height of the object
in pixels, percents or a combination of them
using +,-,/ or * operators. For instance: "50%"
indicates the half of the parent object, and so
when the parent is resized the client is resized
accordingly. The 16 value specifies that the
size of the object is always 16 pixels.

Sample: 50% indicates half of the parent, 25
indicates 25 pixels, or 50%-8 indicates 8-pixels left
from the center of the parent.

(String/Numeric expression)

exAnchorExt 3

Specifies the object's alignment relative to its
parent.

The valid values for exAnchorExt are:

0 (none), the object is not anchored to any
side,
1 (left), the object is anchored to left side of
the parent,
2 (right), the object is anchored to right side
of the parent object,
3 (client), the object takes the full available
area of the parent,
4 (top), the object is anchored to the top side
of the parent object,
5 (bottom), the object is anchored to bottom
side of the parent object

(Numeric expression)

Specifies the HTML text to be displayed on the
object.

The exTextExt supports the following built-in HTML
tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor
element that can be clicked. An anchor is a
piece of text or some other object (for example
an image) which marks the beginning and/or
the end of a hypertext link.The <a> element is
used to mark that piece of text (or inline
image), and to give its hypertextual relationship
to other documents. The control fires the
AnchorClick(AnchorID, Options) event when
the user clicks the anchor element. The

about:blank

FormatAnchor property customizes the visual
effect for anchor elements.

The control supports expandable HTML
captions feature which allows you to
expand(show)/collapse(hide) different
information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor
stores the HTML line/lines to show once the
user clicks/collapses/expands the caption.

exp, stores the plain text to be shown
once the user clicks the anchor, such as "
<a ;exp=show lines>"
e64, encodes in BASE64 the HTML text to
be shown once the user clicks the anchor,
such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray
when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor
808080>show lines<a>-</fgcolor>"
The Decode64Text/Encode64Text methods
of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an
expandable-caption, by inserting the anchor ex-
HTML tag. For instance, "<solidline>
Header</solidline>
Line1<r><a
;exp=show lines>+
Line2
Line3"
shows the Header in underlined and bold on the
first line and Line1, Line2, Line3 on the rest.
The "show lines" is shown instead of Line1,
Line2, Line3 once the user clicks the + sign.

 ... displays portions
of text with a different font and/or different
size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of
the font is missing, and instead size is present,

exTextExt 4

the current font is used with a different size.
For instance, "bit" displays
the bit text using the current font, but with a
different size.
<fgcolor rrggbb> ... </fgcolor> or
<fgcolor=rrggbb> ... </fgcolor> displays text
with a specified foreground color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or
<bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<solidline rrggbb> ... </solidline> or
<solidline=rrggbb> ... </solidline> draws a
solid-line on the bottom side of the current text-
line, of specified RGB color. The <solidline> ...
</solidline> draws a black solid-line on the
bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values
of the color in hexa values.
<dotline rrggbb> ... </dotline> or
<dotline=rrggbb> ... </dotline> draws a dot-line
on the bottom side of the current text-line, of
specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom
side of the current text-line. The rr/gg/bb
represents the red/green/blue values of the
color in hexa values.
<upline> ... </upline> draws the line on the
top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon
inside the text. The number indicates the index
of the icon being inserted. Use the Images
method to assign a list of icons to your chart.
The last 7 bits in the high significant byte of the
number expression indicates the identifier of
the skin being used to paint the object. Use the

Add method to add new skins to the control. If
you need to remove the skin appearance from
a part of the control you need to reset the last
7 bits in the high significant byte of the color
being applied to the part. The width is optional
and indicates the width of the icon being
inserted. Using the width option you can
overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the
width is 18 pixels.
key[:width] inserts a custom
size picture into the text being previously
loaded using the HTMLPicture property. The
Key parameter indicates the key of the picture
being displayed. The Width parameter
indicates a custom size, if you require to
stretch the picture, else the original size of the
picture is used.
& glyph characters as & (&), < (<),
> (>), &qout; (") and &#number; (the
character with specified code), For instance,
the € displays the EUR character. The
& ampersand is only recognized as markup
when it is followed by a known letter or a
#character and a digit. For instance if you want
to display bold in HTML caption you
can use bold
<off offset> ... </off> defines the vertical
offset to display the text/element. The offset
parameter defines the offset to display the
element. This tag is inheritable, so the offset is
keep while the associated </off> tag is found.
You can use the <off offset> HTML tag in
combination with the to define
a smaller or a larger font to be displayed. For
instance: "Text with <off 6>subscript"
displays the text such as: Text with subscript
The "Text with <off -6>superscript"
displays the text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines
a gradient text. The text color or <fgcolor>
defines the starting gradient color, while the

rr/gg/bb represents the red/green/blue values
of the ending color, 808080 if missing as gray.
The mode is a value between 0 and 4, 1 if
missing, and blend could be 0 or 1, 0 if
missing. The HTML tag can be used to
define the height of the font. Any of the rrggbb,
mode or blend field may not be specified. The
<gra> with no fields, shows a vertical gradient
color from the current text color to gray
(808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>"
generates the following picture:

<out rrggbb;width> ... </out> shows the text
with outlined characters, where rr/gg/bb
represents the red/green/blue values of the
outline color, 808080 if missing as gray, width
indicates the size of the outline, 1 if missing.
The text color or <fgcolor> defines the color to
show the inside text. The HTML tag can
be used to define the height of the font. For
instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>
" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define
a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the
shadow color, 808080 if missing as gray, width
indicates the size of shadow, 4 if missing, and
offset indicates the offset from the origin to
display the text's shadow, 2 if missing. The text
color or <fgcolor> defines the color to show
the inside text. The HTML tag can be
used to define the height of the font. For
instance the "<sha>shadow</sha>
" generates the following picture:

or "<sha 404040;5;0>

<fgcolor=FFFFFF>outline anti-
aliasing</fgcolor></sha>" gets:

(String expression)

exTextExtWordWrap 5

Specifies that the object is wrapping the text. The
exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

(Boolean expression)

exTextExtAlignment 6

Indicates the alignment of the text on the object.
The exTextExt value specifies the HTML text to be
displayed on the part of the EBN object. This
property has effect only if there is a text assigned
to the part using the exTextExt flag.

The valid values for exTextExtAlignment are:

0, (hexa 0x00, Top-Left), Text is vertically
aligned at the top, and horizontally aligned on
the left.
1, (hexa 0x01, Top-Center), Text is vertically
aligned at the top, and horizontally aligned at
the center.
2, (hexa 0x02, Top-Right), Text is vertically
aligned at the top, and horizontally aligned on
the right.
16, (hexa 0x10, Middle-Left), Text is
vertically aligned in the middle, and
horizontally aligned on the left.
17, (hexa 0x11, Middle-Center), Text is
vertically aligned in the middle, and
horizontally aligned at the center.
18, (hexa 0x12, Middle-Right), Text is
vertically aligned in the middle, and
horizontally aligned on the right.

32, (hexa 0x20, Bottom-Left), Text is
vertically aligned at the bottom, and
horizontally aligned on the left.
33, (hexa 0x21, Bottom-Center), Text is
vertically aligned at the bottom, and
horizontally aligned at the center.
34, (hexa 0x22, Bottom-Right), Text is
vertically aligned at the bottom, and
horizontally aligned on the right.

(Numeric expression)

exPatternExt 7

Indicates the pattern to be shown on the object.
The exPatternColorExt specifies the color to show
the pattern.

The valid values for exPatternExt are:

0, (hexa 0x000, Empty), The pattern is not
visible
1, (hexa 0x001, Solid),

2, (hexa 0x002, Dot),

3, (hexa 0x003, Shadow),

4, (hexa 0x004, NDot),

5, (hexa 0x005, FDiagonal),

6, (hexa 0x006, BDiagonal),

7, (hexa 0x007, DiagCross),

8, (hexa 0x008, Vertical),

9, (hexa 0x009, Horizontal),

10, (hexa 0x00A, Cross),

11, (hexa 0x00B, Brick),

12, (hexa 0x00C, Yard),

256, (hexa 0x100, Frame),
. The

exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.
768, (hexa 0x300, FrameThick),

. The
exFrameColorExt specifies the color to show
the frame. The Frame flag can be combined
with any other flags.

(Numeric expression)

exPatternColorExt 8

Indicates the color to show the pattern on the
object. The exPatternColorExt property has effect
only if the exPatternExt property is not 0 (empty).
The exFrameColorExt specifies the color to show
the frame (the exPatternExt property includes the
exFrame or exFrameThick flag)

(Color expression)

exFrameColorExt 9

Indicates the color to show the border-frame on the
object. This property set the Frame flag for
exPatternExt property.

(Color expression)

exFrameThickExt 10

Specifies that a thick-frame is shown around the
object. This property set the FrameThick flag for
exPatternExt property.

(Boolean expression)

exUserDataExt 11
Specifies an extra-data associated with the object.

(Variant expression)

constants HTMLRotateEnum
The HTMLRotateEnum expression specifies how the control displays the HTML caption.
The Rotate property rotates the HTML caption. The HTMLRotateEnum expression supports
the following values:

Name Value Description

exHTMLHorizontal 0
Specifies that the HTML text is horizontally
displayed. This flag can be combined with
exHTMLMirror flag.

exHTMLVertical 1 Specifies that the HTML text is vertically displayed.
This flag can be combined with exHTMLMirror flag.

exHTMLMirror 16
Specifies that the HTML text is displayed in mirror.
This flag can be combined with exHTMLHorizontal
or exHTMLVertical flag.

constants ModeEnum
Describes how the button's State is changed when user clicks the button. Use the Mode
property to change the control's mode. By default, the control's mode is exButton. The
control fires the Click event when user clicks the button. The button's State property is
changed depending on the control's Mode property.

Name Value Description
exButton 0 The control acts like a normal button.

exPushLike 1 The control toggles the states when user clicks the
control.

exCustomMode 2 The user is free to choose what state is next when
user clicks the control.

constants IndexExtEnum
The IndexExtEnum type specifies the index of the part of the EBN object to be accessed.
The Index parameter of the BackgroundExtValue property indicates the index of the part of
the EBN object to be changed or accessed. The Exontrol's eXButton WYSWYG Builder
helps you to generate or view the EBN String Format, in the To String field. The list of
objects that compose the EBN are displayed on the left side of the Builder tool, and the
Index of the part is displayed on each item aligned to the right as shown in the following
screen shot:

In this sample, there are 11 objects that composes the EBN, so the Index property goes
from 0 which indicates the root, and 10, which is the last item in the list

So, let's apply this format to an object, to change the exPatternExt property for the object
with the Index 6:

Before calling the BackgroundExt property:

After calling the BackgroundExt property:

https://exontrol.com/exbutton.jsp

and now, let's change the exPatternExt property of the object with the Index 6 to 11 (Yard
), so finally we got:

The IndexExtEnum type supports the following values:

Name Value Description

exIndexExtRoot 0 Specifies the part of the object with the index 0
(root).

exIndexExt1 1 Specifies the part of the object with the index 1.
exIndexExt2 2 Specifies the part of the object with the index 2.
exIndexExt3 3 Specifies the part of the object with the index 3.
exIndexExt4 4 Specifies the part of the object with the index 4.
exIndexExt5 5 Specifies the part of the object with the index 5.
exIndexExt6 6 Specifies the part of the object with the index 6.
exIndexExt7 7 Specifies the part of the object with the index 7.

constants PictureDisplayEnum
Specifies how a picture object is displayed. Use the Picture property to load a picture on
the control's background. Use the PictureDisplay property to specify how the Picture is
displayed on the control's background.

Name Value Description
UpperLeft 0 Aligns the picture to the upper left corner.
UpperCenter 1 Centers the picture on the upper edge.
UpperRight 2 Aligns the picture to the upper right corner.

MiddleLeft 16 Aligns horizontally the picture on the left side, and
centers the picture vertically.

MiddleCenter 17 Puts the picture on the center of the source

MiddleRight 18 Aligns horizontally the picture on the right side, and
centers the picture vertically.

LowerLeft 32 Aligns the picture to the lower left corner.
LowerCenter 33 Centers the picture on the lower edge.
LowerRight 34 Aligns the picture to the lower right corner.
Tile 48 Tiles the picture on the source.
Stretch 49 The picture is resized to fit the source.

constants SideEnum
A SideEnum expression that indicates the side being modified. Use the IncClientState
property to adjust the button's client area.

Name Value Description
exLeftSide 0 The left side to be modified.
exTopSide 1 The top side to be modified.
exRightSide 2 The right side to be modified.
exBottomSide 3 The bottom side to be modified.

constants StateEnum
Describes the control's state. Use the State property to determine the button's state. Use
the Skin property to assign a skin for a specified state. Use the FocusSkin property to
assign a skin for a specified state when control has the focus. Use the Mode property to
specify the mode how the button is running. The control supports the following states:

Name Value Description
exNormal 0 The button is not pressed.
exPushed 1 The button is pressed.
exHot 2 The cursor is over the button.

exDisabled 3 The button is disabled. Use the Enabled property to
enable or disable the button.

exCustom 4 Custom state.

constants StyleEnum
The StyleEnum expression defines a predefined visual appearance for your button. Use the
Style, Skin, FocusSkin property to change the button's visual appearance. The following
predefined styles are supported:

Name Value Description
exCustom4 -4 Custom skin
exCustom3 -3 Custom skin
exCustom2 -2 Custom skin
exCustom1 -1 Custom skin

exDefault 0

exMAC 1
The button will look and act like the Mac

8.x OS button style.

exXPBlue 2
The button will look and act like the

Windows XP button​s blue color scheme.

exXPGreen 3
The button will look and act like the

Windows XP button​s olive green color scheme.

exXPSilver 4
The button will look and act like the

Windows XP button​s silver color scheme.

constants VAlignmentEnum
Specifies the image or caption alignment. Use the VAlignment property to change the
vertical alignment for the caption. Use the ImageVAlignment property to change the vertical
alignment for the image. Use the VFit, HFit, IncClientSide properties to adjust the control's
client area and to organize the image and the caption positions in the control's client area

Name Value Description
exTop 0 The object is top aligned.
exMiddle 1 The object is centered.
exBottom 2 The object is bottom aligned.

Button object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {F3A2203A-6B28-4A74-9DC9-4065D1C0A29D}. The object's program identifier is: "Exontrol.Button". The
/COM object module is: "ExButton.dll"

The exButton control is designed to enhance your WindowsŽ-based
programs by offering the look-and-feel of present GUI design elements. The
control provides predefined button skins for Windows XP, Windows 95/98,
and Mac 8.x buttons. Create your own skins for your buttons in minutes,
using a WYSYWG skin builder. The ability to specify everything that control

needs like graphical objects, transparent skins, HTML caption as simple text makes the
exButton one of the most wanted button control on the market. The exButton control easily
replaces the Standard Windows button by supporting most of the same properties,
methods and events. How to replace my old VB buttons with this new button?

The Exontrol's Button object supports the following properties and methods:

Name Description
Alignment Aligns the caption in the control.

AllowHotState Specifies whether the control displays the hot state when
the cursor is over the control.

AnchorFromPoint Retrieves the identifier of the anchor from point.

AttachTemplate Attaches a script to the current object, including the
events, from a string, file, a safe array of bytes.

BackColor Specifies the control's background color.

BackgroundExt
Indicates additional colors, text, images that can be
displayed on the object's background using the EBN string
format.

BackgroundExtValue Specifies at runtime, the value of the giving property for
specified part of the background extension.

BeginUpdate
Maintains performance when do changes one at a time.
This method prevents the control from painting until the
EndUpdate method is called.

BorderHeight Sets or retrieves a value that indicates the border height
of the control.

BorderWidth Sets or retrieves a value that indicates the border width of
the control.

Caption Specifies the button's caption.

Debug Specifies whether the control displays debugging
information.

Enabled Enables or disables the control.

EndUpdate Resumes painting the control after painting is suspended
by the BeginUpdate method.

EventParam Retrieves or sets a value that indicates the current's event
parameter.

ExecuteTemplate Executes a template and returns the result.

Focusable Gets or sets a value that indicates whether the control can
receive focus.

FocusSkin Specifies the skin file to display the specified state, when
control has the focus.

FocusSkinV Specifies the skin file to display the specified state, when
control has the focus.

Font Retrieves or sets the control's font.
ForeColor Specifies the control's foreground color.
ForeColorState Specifies the foreground color for a specified state.

FormatAnchor Specifies the visual effect for anchor elements in HTML
captions.

HFit Specifies a value that indicates the horizontal offset to fit
image with the caption.

HTMLPicture Adds or replaces a picture in HTML captions.
hWnd Retrieves the control's window handle.
Image Specifies the image being displayed.
ImageAlignment Specifies the image's alignment.

Images Sets at runtime the control's image list. The Handle should
be a handle to an Image List Control.

ImageSize Retrieves or sets the size of icons the control displays.
ImageVAlignment Specifies the image's vertical alignment.

IncClientState Adjusts the control's client area for the specified side and
state.

Mode Specifies the control's mode.

MouseIcon Sets or returns a value that determines a custom Icon to

be displayed when the pointer moves over the control.

MousePointer
Sets or returns a value that determines the MousePointer
to be displayed when the pointer moves over the control.

Picture Retrieves or sets a graphic to be displayed in the control.

PictureDisplay Retrieves or sets a value that indicates the way how the
graphic is displayed on the control's background

Refresh Refreshes the control.

RenderType Specifies the way colored EBN objects are displayed on
the component.

ReplaceIcon Adds a new icon, replaces an icon or clears the control's
image list.

Rotate Rotates the HTML caption.

ShowFocusRect Sets or returns a value that determines whether or not the
focus rectangle should be shown.

Skin Specifies the skin file to display the specified state.
SkinV Specifies the skin file to display the specified state.
State Specifies the control's state.
Style Specifies the control's style.
Template Specifies the control's template.

TemplateDef Defines inside variables for the next
Template/ExecuteTemplate call.

TemplatePut Defines inside variables for the next
Template/ExecuteTemplate call.

ToolTipDelay Specifies the time in ms that passes before the ToolTip
appears.

ToolTipFont Retrieves or sets the tooltip's font.
ToolTipMargin Defines the size of the control's tooltip margins.

ToolTipPopDelay Specifies the period in ms of time the ToolTip remains
visible if the mouse pointer is stationary within a control.

ToolTipText Specifies the control's tooltip text.
ToolTipTitle Specifies the title of the control's tooltip.

ToolTipWidth Specifies a value that indicates the width of the tooltip
window, in pixels.
Specifies whether the focus skins are used when control

UseFocusSkin has the focus.

UserData Gets or sets the user-definable data for the current object.

UseTransparency
Specifies whether the control supports transparency. The
transparent regions in the control's skin indicates the
transparency.

VAlignment Specifies the caption's vertical alignment.
Version Retrieves the control's version.

VFit Specifies a value that indicates the vertical offset to fit
image with the caption.

WordWrap Indicates whether a multiline text automatically wraps
words to the beginning of the next line when necessary.

property Button.Alignment as AlignmentEnum
Aligns the caption in the control.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the caption's
horizontal alignment.

Use the Caption property to assign a caption to the button. By default, the Alignment
property is exCenter. Use the Alignment property to align the caption n the button. Use the
VAlignment property to vertically align the caption in the button. Use the ImageAlignment
property to align the the image of the button. Use the ImageVAlignment property to
vertically align the image in the button. Use the VFit, HFit, IncClientSide properties to adjust
the control's client area and to organize the image and the caption positions in the control's
client area.

property Button.AllowHotState as Boolean
Specifies whether the control displays the hot state when the cursor is over the control.

Type Description

Boolean A boolean expression that indicates whether the exHot
state is displayed when the cursor is over the button.

By default, the AllowHotState property is false. Use the Style property to specify the
control's style. The Style property changes the AllowHotState and UseFocusSkin properties
based on the style used. Use the Skin property to assign custom skins for specified states.
If the AllowHotState property is True, the Skin(exHot) gets displayed when the cursor is
over the button.

Please be aware that Style property changes the following properties, based on the style
chosen:

AllowHotState property
UseFocusSkin property
Skin
FocusSkin

If you require certain value for the AllowHotState property you have to change the
AllowHotState property after changing the Style property.

For instance, the exDefault predefined style for hot state (when the cursor is over the
button).

property Button.AnchorFromPoint (X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS) as String
Retrieves the identifier of the anchor from point.

Type Description

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in client
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in client
coordinates.

String
A String expression that specifies the identifier (id) of the
anchor element from the point, or empty string if there is
no anchor element at the cursor.

Use the AnchorFromPoint property to determine the identifier of the anchor from the point.
Use the <a id;tooltip> anchor elements to add hyperlinks to cell's caption. The tooltip is
shown when the cursor hovers an anchor element with a tooltip parameter. The control fires
the AnchorClick event when the user clicks an anchor element. The MouseMove event is
generated continually as the mouse pointer moves across the control.

method Button.AttachTemplate (Template as Variant)
Attaches a script to the current object, including the events, from a string, file, a safe array
of bytes.

Type Description
Template as Variant A string expression that specifies the Template to execute.

The AttachTemplate/x-script code is a simple way of calling control/object's properties,
methods/events using strings. The AttachTemplate features allows you to attach a x-script
code to the component. The AttachTemplate method executes x-script code (including
events), from a string, file or a safe array of bytes. This feature allows you to run any x-
script code for any configuration of the component /COM, /NET or /WPF. Exontrol owns the
x-script implementation in its easiest form and it does not require any VB engine or
whatever to get executed. The x-script code can be converted to several programming
languages using the eXHelper tool.

The following sample opens the Windows Internet Explorer once the user clicks the control
(/COM version):

AttachTemplate("handle Click(){ CreateObject(`internetexplorer.application`){ Visible =
True; Navigate(`https://www.exontrol.com`) } } ")

This script is equivalent with the following VB code:

Private Sub Button1_Click()
 With CreateObject("internetexplorer.application")
 .Visible = True
 .Navigate ("https://www.exontrol.com")
 End With
End Sub

The AttachTemplate/x-script syntax in BNF notation is defined like follows:

<x-script> := <lines>
<lines> := <line>[<eol> <lines>] | <block>
<block> := <call> [<eol>] { [<eol>] <lines> [<eol>] } [<eol>]
<eol> := ";" | "\r\n"
<line> := <dim> | <createobject> | <call> | <set> | <comment> | <handle>[<eol>]{[<eol>]
<lines>[<eol>]}[<eol>]
<dim> := "DIM" <variables>
<variables> := <variable> [, <variables>]

<variable> := "ME" | <identifier>
<createobject> := "CREATEOBJECT(`"<type>"`)"
<call> := <variable> | <property> | <variable>"."<property> | <createobject>"."<property>
<property> := [<property>"."]<identifier>["("<parameters>")"]
<set> := <call> "=" <value>
<property> := <identifier> | <identifier>"("[<parameters>]")"
<parameters> := <value> [","<parameters>]
<value> := <boolean> | <number> | <color> | <date> | <string> | <createobject> | <call>
<boolean> := "TRUE" | "FALSE"
<number> := "0X"<hexa> | ["-"]<integer>["."<integer>]
<digit10> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit16> := <digit10> | A | B | C | D | E | F
<integer> := <digit10>[<integer>]
<hexa> := <digit16>[<hexa>]
<color> := "RGB("<integer>","<integer>","<integer>")"
<date> := "#"<integer>"/"<integer>"/"<integer>" "[<integer>":"<integer>":"<integer>"]"#"
<string> := '"'<text>'"' | "`"<text>"`"
<comment> := "'"<text>
<handle> := "handle " <event>
<event> := <identifier>"("[<eparameters>]")"
<eparameters> := <eparameter> [","<eparameters>]
<parameters> := <identifier>

where:

<identifier> indicates an identifier of the variable, property, method or event, and should
start with a letter.
<type> indicates the type the CreateObject function creates, as a progID for /COM version
or the assembly-qualified name of the type to create for /NET or /WPF version
<text> any string of characters

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character.

The advantage of the AttachTemplate relative to Template / ExecuteTemplate is that the
AttachTemplate can add handlers to the control events.

property Button.BackColor as Color
Specifies the control's background color.

Type Description

Color A color expression that indicates the control's background
color.

 The BackColor property changes the control's background color. The background color is
applied to the current style/visual appearance. The Style property specifies the control's
visual appearance. Use the Skin/SkinV method to customize the current visual appearance
using EBN objects. The color for the button's visual appearance is not changed if the
BackColor property is white or black. The Enabled property specifies whether the control is
enabled or disabled. The ForeColorState(exDisabled) specifies the color for the disabled
state. Using the BackgroundExt property you have unlimited options to show any HTML
text, images, colors, EBNs, patterns, frames anywhere on the object's background.

The following screen shot shows the button's look once the BackColor property is changed
and Style property is exDefault:

The following screen shot shows the button's look once the BackColor property is changed
and Style property is exMAC:

property Button.BackgroundExt as String
Indicates additional colors, text, images that can be displayed on the object's background
using the EBN string format.

Type Description

String

A String expression ("EBN String Format") that defines
the layout of the UI to be applied on the object's
background. The syntax of EBN String Format in BNF
notation is shown bellow. You can use the EBN's Builder
of eXButton/COM control to define visually the EBN
String Format.

By default, the BackgroundExt property is empty. Using the BackgroundExt property you
have unlimited options to show any HTML text, images, colors, EBNs, patterns, frames
anywhere on the object's background. For instance, let's say you need to display more
colors on the object's background, or just want to display an additional caption or image
to a specified location on the object's background. The EBN String Format defines the
parts of the EBN to be applied on the object's background. The EBN is a set of UI elements
that are built as a tree where each element is anchored to its parent element. Use the
BackgroundExtValue property to change at runtime any UI property for any part that
composes the EBN String Format. The BackgroundExt property is applied right after setting
the object's backcolor, and before drawing the default object's captions, icons or pictures.

Complex samples:

https://exontrol.com/ebn.jsp

Easy samples:

"[pattern=6]", shows the BDiagonal pattern on the object's background.

"[frame=RGB(255,0,0),framethick]", draws a red thick-border around the object.

"[frame=RGB(255,0,0),framethick,pattern=6,patterncolor=RGB(255,0,0)]", draws a
red thick-border around the object, with a patter inside.

"[[patterncolor=RGB(255,0,0)]
(none[(4,4,100%-8,100%-8),pattern=0x006,patterncolor=RGB(255,0,0),frame=RGB(255,0,0),framethick])]",
draws a red thick-border around the object, with a patter inside, with a 4-pixels wide
padding:

"top[4,back=RGB(0,0,255)]", draws a blue line on the top side of the object's
background, of 4-pixels wide.

"[text=`caption`,align=0x22]", shows the caption string aligned to the bottom-right side
of the object's background.

"[text=`flag`,align=0x11]" shows the flag picture and the sweden string
aligned to the bottom side of the object.

"left[10,back=RGB(255,0,0)]", draws a red line on the left side of the object's
background, of 10-pixels wide.

"bottom[50%,pattern=6,frame]", shows the BDiagonal pattern with a border arround on
the lower-half part of the object's background.

"root[text=`caption 2`,align=0x22](client[text=`caption 1`,align=0x20])", shows
the caption 1 aligned to the bottom-left side, and the caption 2 to the bottom-right side

The Exontrol's eXButton WYSWYG Builder helps you to generate or view the EBN String
Format, in the To String field as shown in the following screen shot:

The To String field of the EBN Builder defines the EBN String Format that can be used on
BackgroundExt property.

The EBN String Format syntax in BNF notation is defined like follows:

<EBN> ::= <elements> | <root> "(" [<elements>] ")"
<elements> ::= <element> ["," <elements>]
<root> ::= "root" [<attributes>] | [<attributes>]
<element> ::= <anchor> [<attributes>] ["(" [<elements>] ")"]
<anchor> ::= "none" | "left" | "right" | "client" | "top" | "bottom"
<attributes> ::= "[" [<client> ","] <attribute> ["," <attributes>] "]"
<client> ::= <expression> | <expression> "," <expression> "," <expression> ","
<expression>
<expression> ::= <number> | <number> "%"
<attribute> ::= <backcolor> | <text> | <wordwrap> | <align> | <pattern> |
<patterncolor> | <frame> | <framethick> | <data> | <others>
<equal> ::= "="

https://exontrol.com/exbutton.jsp

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<decimal> ::= <digit><decimal>
<hexadigit> ::= <digit> | "A" | "B" "C" | "D" | "E" "F"
<hexa> ::= <hexadigit><hexa>
<number> ::= <decimal> | "0x" <hexa>
<color> ::= <rgbcolor> | number
<rgbcolor> ::= "RGB" "(" <number> "," <number> "," <number> ")"
<string> ::= "`" <characters> "`" | "'" <characters> "'" | " <characters> "
<characters> ::= <char>|<characters>
<char> ::= <any_character_excepts_null>
<backcolor> ::= "back" <equal> <color>
<text> ::= "text" <equal> <string>
<align> ::= "align" <equal> <number>
<pattern> ::= "pattern" <equal> <number>
<patterncolor> ::= "patterncolor" <equal> <color>
<frame> ::= "frame" <equal> <color>
<data> ::= "data" <equal> <number> | <string>
<framethick> ::= "framethick"
<wordwrap> ::= "wordwrap"

Others like: pic, stretch, hstretch, vstretch, transparent, from, to are reserved for future
use only.

Now, lets say we have the following request to layout the colors on the objects:

We define the BackgroundExt property such as
"top[30%,back=RGB(253,218,101)],client[back=RGB(91,157,210)],none[(0%,0%,10%,100%)]
(top[90%,back=RGB(0,0,0)])", and it looks as:

so, if we apply to our object we got:

Now, lets say we have the following request to layout the colors on the objects:

We define BackgroundExt property such as "left[10%]
(top[90%,back=RGB(0,0,0)]),top[30%,back=RGB(254,217,102)],client[back=RGB(91,156,212)]",
and it looks as:

so, if we apply to our object we got:

property Button.BackgroundExtValue(Index as IndexExtEnum, Property
as BackgroundExtPropertyEnum) as Variant
Specifies at runtime, the value of the giving property for specified part of the background
extension.

Type Description

Index as IndexExtEnum

A Long expression that defines the index of the part that
composes the EBN to be accessed / changed.

The following screen shot shows where you can find Index
of the parts:

The screen shot shows that the EBN contains 11
elements, so in this case the Index starts at 0 (root
element) and ends on 10.

Property as
BackgroundExtPropertyEnum

A BackgroundExtPropertyEnum expression that specifies
the property to be changed as explained bellow.

Variant
A Variant expression that defines the part's value. The
Type of the expression depending on the Property
parameter as explained bellow.

Use the BackgroundExtValue property to change at runtime any UI property for any part
that composes the EBN String Format. The BackgroundExtValue property has no effect if
the BackgroundExt property is empty (by default). The idea is as follows: first you need
to decide the layout of the UI to put on the object's background, using the BackgroundExt

property, and next (if required), you can change any property of any part of the
background extension to a new value. In other words, let's say you have the same layout
to be applied to some of your objects, so you specify the BackgroundExt to be the same
for them, and next use the BackgroundExtValue property to change particular properties (
like back-color, size, position, anchor) for different objects.

You can access/define/change the following UI properties of the element:

exBackColorExt(1), Indicates the background color / EBN color to be shown on the
part of the object. Sample: 255 indicates red, RGB(0,255,0) green, or 0x1000000.
(Color/Numeric expression, The last 7 bits in the high significant byte of the color
indicate the identifier of the skin being used)
exClientExt(2), Specifies the position/size of the object, depending on the object's
anchor. The syntax of the exClientExt is related to the exAnchorExt value. For instance,
if the object is anchored to the left side of the parent (exAnchorExt = 1), the
exClientExt specifies just the width of the part in pixels/percents, not including the
position. In case, the exAnchorExt is client, the exClientExt has no effect. Sample:
50% indicates half of the parent, 25 indicates 25 pixels, or 50%-8 indicates 8-pixels
left from the center of the parent. (String/Numeric expression)
exAnchorExt(3), Specifies the object's alignment relative to its parent. (Numeric
expression)
exTextExt(4), Specifies the HTML text to be displayed on the object. (String
expression)
exTextExtWordWrap(5), Specifies that the object is wrapping the text. The exTextExt
value specifies the HTML text to be displayed on the part of the EBN object. This
property has effect only if there is a text assigned to the part using the exTextExt flag.
(Boolean expression)
exTextExtAlignment(6), Indicates the alignment of the text on the object. The
exTextExt value specifies the HTML text to be displayed on the part of the EBN object.
This property has effect only if there is a text assigned to the part using the exTextExt
flag (Numeric expression)
exPatternExt(7), Indicates the pattern to be shown on the object. The
exPatternColorExt specifies the color to show the pattern. (Numeric expression)
exPatternColorExt(8), Indicates the color to show the pattern on the object. The
exPatternColorExt property has effect only if the exPatternExt property is not 0 (empty
). The exFrameColorExt specifies the color to show the frame (the exPatternExt
property includes the exFrame or exFrameThick flag). (Color expression)
exFrameColorExt(9), Indicates the color to show the border-frame on the object. This
property set the Frame flag for exPatternExt property. (Color expression)
exFrameThickExt(11), Specifies that a thick-frame is shown around the object. This
property set the FrameThick flag for exPatternExt property. (Boolean expression)
exUserDataExt(12), Specifies an extra-data associated with the object. (Variant

expression)

For instance, having the BackgroundExt on "bottom[50%,pattern=6,frame]"

we got:

so let's change the percent of 50% to 25% like BackgroundExtValue(1,2) on "25%", where
1 indicates the first element after root, and 2 indicates the exClientExt property, we get:

In VB you should have the following syntax:

.BackgroundExt = "bottom[50%,pattern=6,frame]"

.BackgroundExtValue(exIndexExt1, exClientExt) = "25%"

method Button.BeginUpdate ()
Maintains performance when do changes one at a time. This method prevents the control
from painting until the EndUpdate method is called.

Type Description

Use the BeginUpdate and EndUpdate method when multiple changes are required at the
same time.

The following sample locks painting the button's appearance while changes is performed:

With Button1

 .BeginUpdate
 .BorderHeight = 20
 .BorderWidth = 20

 .Picture = LoadPicture("C:\WINNT\Web\tips.gif")
 .PictureDisplay = Tile

 Dim s As String
 s =
"gBHJJGHA5MJAAEIe4AAAFh0OCERiQbigwEobAsXCAljkcHYwDYQkAli0iGAwHYlCA7HZQIpFKExLcxMpbLc1LZ7MplQpwIpbOBwPdBnpwSFDPdJo57TZ7XbwQskQpQEqFLdVOCFrSbrSlQqQr1PQrFfaQiKQq9oGCQMolSFgSCbWFxXdgYqQWDQSC7bd7eCQYrlwFlaD7TcRTcxxJbTdtxowTZwEqbuKbuVyaCbvibYrwTeFTbbfalyWkGClyylUqw1S71euXbFUq7cqlaG1aDwUuiUrlfawiiwyXCOHCPdzMqwWC75TF5fOwKwbbwWG+XccXcsXZ7Eq7XbQ2Pg2/feFPfbFhzFk7Fl7FmLFnbF7jFQucSAwYqbUrF7zFYpoP+cpim3ARywEeB9mghxoIiaCTmgmxoD2QpoEKDcKwo+69EgzIYGgUooPAz5oG3Ehym2jhtpObaWG2l5tpibabm2nZtqCbatL6Eq+hgbZNx6WAtm2XZCm2/JtwI0R9nKHYinKmxyp2cqgnKrTBEgcpNg3LJNnLE0DQMeB4IieCOHgk54JeeCYqgQrqB26hYPKLbyqe+B4G2UsxT2fZ9ocfaKH2jh9pOfaWH2l59pifabH2nZ9qCfakn2rSykgwxNtGUp9u886yGgMsEsKvp9yRJbfPKfcxT6Xc+rJPoA1jWVZ1pWtbVvXFc11XdeV7X1f2BYNdoYAAQnyAgAoYf4ABZYiE2eIAEWWf4Eg4JBYFAYJBgQCYVC4LAIGYDZDlOGR"

 s = s +
"mm0IpYjEUogW2JJtCwVBpFIJQKhWYQdAKUwSAwCYGAqSw+DmBRrFYS4YH+AhNiSGYMBaTAcDOJJVByeYrGcLJXG8aBQECGRyl+SpTisFIumUWg0mmHwyDULwxFIYgjkSCQZDMZAUFCYhlk8GhHCcToJCUEZAiiUgxGmVQuhWexmiYGoYD8AAwnkYomlGXYZm6Ph8mkZBGm+XZAA2dowDAOhQASSZVAkFYvFYHA1BgFQXD8LhclkMhkkqXo7AGG5xBySZlgKABCguGwYBiWgaEaEw4ikQ4sm6Qg0EOBQKBcNgMBiMQBkKBIIggAgAGAIBAAAERFnYQh9CIZIoQ4ZBJhWXg4gMK5Xi8XQjAia45EGUO9BYaY3C0RQVHaTZDmuRYVH+I58LAUwtFAaRTnuSZFlmPZPF4ahTlOSoEmYKB4jOJZPCUepVF+P5/loagaGX9w6kkQoXk4NphCsLR7nKMcKQJgIBGBQOEQgEQdBmGUB4GAyAACEDKHsOo+AChlEqF0WwlwKhTGoGAIQARCiZCIOERQEwHDCCGAkEIfgIhjC6HYAooxMhmCoFgGA3gfilECOEA4KwgAGBSOQFYtRqBiEMAgGIiBEDZEaDUSoshAgKCkEwWA4xKDjByIEBALhfhABOB0EoZQqBHHKJcFIfQ4BGBEDgUgURCAEFCF0U45hNAlGiAAcwWRwBlHOAoFAvhqBpHOJ0PAzhZDKCwCYXI+RzBRHKJ0YQygWiEAkGoBYIBJi8GOFkFwtgKB6EWC0T"

 s = s +
"SWBzh4CQMEIQyxSiYAMOILwfBMDSDEAt/DXB0ilFYJAQoXwlBIFqBIZYqhWDGHkAgM4tRaD/BUKsDgnBsiyHUCsVYdBrjWCgGYUIChogqFaAQFY7BYDEAsMsZIgROCVCkEkEgkRWCSASFsew0RACiDqBAUoYh2i1GwGYPYrQTBiGgIQBIIwrDJCqNkCQTHEjZFyEtnABgNBwExB4AYvhBCxHALwbwIQsQLBIPwYAYQzB3D6MEQgXwPDSgoBUGwgBLASAaPoaIOxXgqEsKgKIwhDCXHiBsRgXh+DeDwBcC4aALCGBgBgVAdB2DxGOCAYYcQDgmCKMgIALgJhAC4FEWIxQaABFsMIAYygQhMAGBwJwNRigJCaDsWgkB5CHBEK4XgGQnhcCgCAYAlxSCVGsAQE4xQJBLEMAYFgWAoiXGKHcDoQRggOC2IgYAiAKA7CIHEJAGQ/j+EmMANApBcgrFsLsBoJAACAGCAwGoBxGCWGINESIQxrhwAOIEA4lg2BTFFWsOFJAhBzGeOkf4khDgQCGOQTo9xshoBGMcUwmhBCnFyOYO4jAZjOHMKQRICxyCQCSNkUIQhyAuDwNYPICwWiuB4AsLwmxEhPH8J0UAtx4BiH0OkVApxHB6BaAoeweR1CUFEJ8UQyQWi5GoF4XYJw/hUEEKAPYvhEACEVPka4khkhDCGH0DIO7RAkE+DwFA7AUi6HSKMZQgxRBJFoK8U4uIAi0AoKkfoIxQC8DuPodwnBuiiD6JEWInApCaDkC"

 s = s +
"YdoNwVAtECHQZ4kxUDrGeAIHwTRaiMB0AsJIxQVguDeCoWQ9B3i/BYJALA1B/gGBwIgeADQoAWFcDAL4/gODUAkFgHA8BAiwEQMQfYIJThOGoAEKwqryhaCYJUD4eRUjCAqCABgoQEBlEiJ4LAiAoCEGOJob4TA7ChFgGgGIcAKhCEUKEBgYx0CHBiIAZ4FBShgEIA4a4wADA+BgGIB4oAECEAMP8Y4wgVhfFiIQGISAmCiBUKAIQkwOB6ECAQDQAqdAqGGIQEoAIeBdCgMMDgiB8AuBGJ4AQZAwAMBGBwOwMdmByCBccHQ1wyA2DIK4XoTBDALCgHAa4tALCCAsIUWI5QGjuDGEQCoShQCvEQGWf4ahGDYAuLoWAgwJgdBYGEOw3BwBMAxs8GgPgWgwDcLgJgIwYDjAuLsXAoQFg6BQJwJQIBJDIFqOQUQFA1AgACMQDwSRJglCCK0CIRhECAHqLIaYyRaAIHEEUCAsxGAlCaHkZQRg2DhwoHsIYGA7iJAUDgHgYQFNyEuBsPYthMhaBsIIBRIguYsGKMwKgYAwgmCIIgIIGgjj5AuCYeIpAIgaBwEAOQNgDAHBKC4QwEBFjcACAwaARQmDNFwEcAoDxoCkGMIYIQsxNAtCKBYGYuRCAIC8LAAgNxpASBgDwYIBADBCHAKQAAKgKjtBoEgJY2lsAQEEB4fA0Qzg/HGIMAwNAYCFAaOgBATB/g8CaBwHQcQhARAUAIAgGAwBBAkB4PIlwbAYACAMCYgBgAOB"

 s = s +
"cBAAQNQ2BBAeIcFAjgLC+EoAAO4mRzA+DGIsVIAgMBwBABNAJAwAAB1BGBBAOgkAIgOhxAMADg3BCAFhVAdAMhRBCgVgyhUhThKBQBBhLgRAbgPBchogGhUgygkAAgpg7g6ABgdgcBTg3A7hNh1A8BMA5hqhPBpAggEAtAOhnhvBOBRgEAOAIAggCgwhuhIgDnYBAgGgiQCA0g+gpiEAAAdiAg=="

 .Caption = "&Help;"

 .Image = s
 .VFit = 6

 .EndUpdate
End With

property Button.BorderHeight as Long
Sets or retrieves a value that indicates the border height of the control.

Type Description

Long A long expression that indicates the height of the control's
margin, in pixels.

The BorderHeight and BorderWidth properties determines the area where the skin is
displayed. By default, the BorderHeight property is 0If the BorderWidth and BorderHeight
properties are 0(zero), the skin uses the entire control's client area. In this case we can say
that the control has no margins. Use the VFit, HFit, IncClientSide properties to adjust the
control's client area and to organize the image and the caption positions in the control's
client area. The BackColor and Picture properties have effect on the control's margins and
on the transparent areas of the skin.

property Button.BorderWidth as Long
Sets or retrieves a value that indicates the border width of the control.

Type Description

Long A long expression that indicates the width of the control's
margins in pixels.

The BorderHeight and BorderWidth properties determines the area where the skin is
displayed. By default, the BorderWidth property is 0. If the BorderWidth and BorderHeight
properties are 0(zero), the skin uses the entire control's client area. In this case we can say
that the control has no margins. Use the VFit, HFit, IncClientSide properties to adjust the
control's client area and to organize the image and the caption positions in the control's
client area. The BackColor and Picture properties have effect on the control's margins and
on the transparent areas of the skin.

property Button.Caption as String
Specifies the button's caption.

Type Description
String A string expression that indicates the control's caption.

The button allows for an access key to be set in the caption by placing an ampersand (&)
before the character to be used for the access key. The button's first ampersand specifies
the access key. Use the HTML tag to insert icons inside the button's caption

The Caption supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show

about:blank

lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a

known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

The WordWrap property to indicates whether a multi-lines text automatically wraps words
to the beginning of the next line when necessary. Use the Image property to assign an
image to the button. Use the Picture property to assign a picture on the control's
background. Use the Alignment property to align the caption in the button. Use the
VAlignment property to vertically align the caption in the button. Use the Style or Skin
property to change the button's visual appearance.

All of the properties and methods for all objects in the Exontrol's exButton can be assigned
at design time using the WYSWYG Template /Layout editor. Open the control in design
mode, and select Properties from its context menu. The Template language uses the x-
script language (very simple), that can be used to initializes the properties and methods at
design time.

The following sample initializes the control's image and caption at design mode, using the
Template page:

' Specifies the control's caption
Caption = "Exontrol's exButton component is our answer to your GUI needs"
WordWrap = True

' https://www.exontrol.com/sg.jsp?content=support/faq#eximages
Image =
"gBHJJGHA5MIwAEIe4AAAFhwbiAliQwig7ixFjBQjRbjhljxwkB7kSFkiQkyblCllSwli7lzFmDQmTbmjlmzwnD7nQBnk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1YhgAEL5AgBhj/AAssMJthABFof4JDhIWCgYKDBATFT8M6hUIFAQAEQCCDwYF/QoWDZCRBgOKgIYHCQXMisKBAEQAAgOBZaSgQhjERANKQiZhIWamYyIBQ6FzcNKxQLJT4ADA4RjwObAAidBYdHwABQgUxMQYZEI0cD4OgnYKaKyzIRFNQx2YCKoFHScYD0ADXQwUAgwLoLQDqaCWBJoNQ9NBxFJTVQORgiarqSABbamGwtDAwBUWhQmqYALnOFQvGYPA4m6AwKhkZxKj2PBWC0SZCgmVY6CwIJgieBAniubRKHgaYgiwQwGiCfxGDWbBRmGZYIi2VwGnAexxGUSwUFiaR+hQPbBgOCoLCIHh4DAARCmQG4AlgNxuhwWgpFAEQUhuOxOk0NrhAaQoBmgPYdFSIZPjYGYbn+HhgEoAA7HMBIOjUM51AoPojHkEwVlET5slgWZtAEUBdjeSoeF6X5/rQRRSi+QB6GychsEAfZshKYABGQZorlAOgMBqEgAjYHB2jqSoigmYBLk+QZnBqGhggAEwImgbojgoIwSE+MxUHiS4REQCQWluD48B+JJoL+YQikuaI9AALgLmsJQfnSdAvDkCJEhIIIBgOegLEiPBqCyCAAjcCwgAAIJBhQBQkHGL4gDaNBokkZQMiwUAuioJQiCAQYsHMcwwEIeoigAYIogsGIwFKIYICIWguEoPgQhsawBASGgwCuJwLH8K4LigAIaDwbxMAOKxbisPwfASQATFASoagIEYwgcSoKGiAA/mEdIuiGPxCmObIlhMIJNHONxFH8EpPCGeB+noEpBBSSRjCsPZEiyKhgjAH5whSdLEjwDxjC8TxVEMFRzFWJJZBUSI0gQEQLBOM4VHkIg1D0CAJDQNg/p4AAdoC"

The button's visual appearance in this case will be:

https://exontrol.com/faq.jsp?F=template

property Button.Debug as Boolean
Specifies whether the control displays debugging information.

Type Description

Boolean A boolean expression that specifies whether the control
displays debugging information.

Only for internal use.

property Button.Enabled as Boolean
Enables or disables the control.

Type Description

Boolean A boolean expression that indicates whether the control is
enabled or disabled.

By default, the button is enabled. Use the Enabled property to disable the control. When
control is disabled, the control displays the exDisabled skin. Use the ForeColorState
property to assign a different foreground color when the control is disabled. By default, the
ForeColorState(exDisabled) is COLOR_GRAYTEXT system color.

method Button.EndUpdate ()
Resumes painting the control after painting is suspended by the BeginUpdate method.

Type Description

Use the BeginUpdate and EndUpdate method when multiple changes are required at the
same time.

The following sample locks painting the button's appearance while changes is performed:

With Button1

 .BeginUpdate
 .BorderHeight = 20
 .BorderWidth = 20

 .Picture = LoadPicture("C:\WINNT\Web\tips.gif")
 .PictureDisplay = Tile

 Dim s As String
 s =
"gBHJJGHA5MJAAEIe4AAAFh0OCERiQbigwEobAsXCAljkcHYwDYQkAli0iGAwHYlCA7HZQIpFKExLcxMpbLc1LZ7MplQpwIpbOBwPdBnpwSFDPdJo57TZ7XbwQskQpQEqFLdVOCFrSbrSlQqQr1PQrFfaQiKQq9oGCQMolSFgSCbWFxXdgYqQWDQSC7bd7eCQYrlwFlaD7TcRTcxxJbTdtxowTZwEqbuKbuVyaCbvibYrwTeFTbbfalyWkGClyylUqw1S71euXbFUq7cqlaG1aDwUuiUrlfawiiwyXCOHCPdzMqwWC75TF5fOwKwbbwWG+XccXcsXZ7Eq7XbQ2Pg2/feFPfbFhzFk7Fl7FmLFnbF7jFQucSAwYqbUrF7zFYpoP+cpim3ARywEeB9mghxoIiaCTmgmxoD2QpoEKDcKwo+69EgzIYGgUooPAz5oG3Ehym2jhtpObaWG2l5tpibabm2nZtqCbatL6Eq+hgbZNx6WAtm2XZCm2/JtwI0R9nKHYinKmxyp2cqgnKrTBEgcpNg3LJNnLE0DQMeB4IieCOHgk54JeeCYqgQrqB26hYPKLbyqe+B4G2UsxT2fZ9ocfaKH2jh9pOfaWH2l59pifabH2nZ9qCfakn2rSykgwxNtGUp9u886yGgMsEsKvp9yRJbfPKfcxT6Xc+rJPoA1jWVZ1pWtbVvXFc11XdeV7X1f2BYNdoYAAQnyAgAoYf4ABZYiE2eIAEWWf4Eg4JBYFAYJBgQCYVC4LAIGYDZDlOGR"

 s = s +
"mm0IpYjEUogW2JJtCwVBpFIJQKhWYQdAKUwSAwCYGAqSw+DmBRrFYS4YH+AhNiSGYMBaTAcDOJJVByeYrGcLJXG8aBQECGRyl+SpTisFIumUWg0mmHwyDULwxFIYgjkSCQZDMZAUFCYhlk8GhHCcToJCUEZAiiUgxGmVQuhWexmiYGoYD8AAwnkYomlGXYZm6Ph8mkZBGm+XZAA2dowDAOhQASSZVAkFYvFYHA1BgFQXD8LhclkMhkkqXo7AGG5xBySZlgKABCguGwYBiWgaEaEw4ikQ4sm6Qg0EOBQKBcNgMBiMQBkKBIIggAgAGAIBAAAERFnYQh9CIZIoQ4ZBJhWXg4gMK5Xi8XQjAia45EGUO9BYaY3C0RQVHaTZDmuRYVH+I58LAUwtFAaRTnuSZFlmPZPF4ahTlOSoEmYKB4jOJZPCUepVF+P5/loagaGX9w6kkQoXk4NphCsLR7nKMcKQJgIBGBQOEQgEQdBmGUB4GAyAACEDKHsOo+AChlEqF0WwlwKhTGoGAIQARCiZCIOERQEwHDCCGAkEIfgIhjC6HYAooxMhmCoFgGA3gfilECOEA4KwgAGBSOQFYtRqBiEMAgGIiBEDZEaDUSoshAgKCkEwWA4xKDjByIEBALhfhABOB0EoZQqBHHKJcFIfQ4BGBEDgUgURCAEFCF0U45hNAlGiAAcwWRwBlHOAoFAvhqBpHOJ0PAzhZDKCwCYXI+RzBRHKJ0YQygWiEAkGoBYIBJi8GOFkFwtgKB6EWC0T"

 s = s +
"SWBzh4CQMEIQyxSiYAMOILwfBMDSDEAt/DXB0ilFYJAQoXwlBIFqBIZYqhWDGHkAgM4tRaD/BUKsDgnBsiyHUCsVYdBrjWCgGYUIChogqFaAQFY7BYDEAsMsZIgROCVCkEkEgkRWCSASFsew0RACiDqBAUoYh2i1GwGYPYrQTBiGgIQBIIwrDJCqNkCQTHEjZFyEtnABgNBwExB4AYvhBCxHALwbwIQsQLBIPwYAYQzB3D6MEQgXwPDSgoBUGwgBLASAaPoaIOxXgqEsKgKIwhDCXHiBsRgXh+DeDwBcC4aALCGBgBgVAdB2DxGOCAYYcQDgmCKMgIALgJhAC4FEWIxQaABFsMIAYygQhMAGBwJwNRigJCaDsWgkB5CHBEK4XgGQnhcCgCAYAlxSCVGsAQE4xQJBLEMAYFgWAoiXGKHcDoQRggOC2IgYAiAKA7CIHEJAGQ/j+EmMANApBcgrFsLsBoJAACAGCAwGoBxGCWGINESIQxrhwAOIEA4lg2BTFFWsOFJAhBzGeOkf4khDgQCGOQTo9xshoBGMcUwmhBCnFyOYO4jAZjOHMKQRICxyCQCSNkUIQhyAuDwNYPICwWiuB4AsLwmxEhPH8J0UAtx4BiH0OkVApxHB6BaAoeweR1CUFEJ8UQyQWi5GoF4XYJw/hUEEKAPYvhEACEVPka4khkhDCGH0DIO7RAkE+DwFA7AUi6HSKMZQgxRBJFoK8U4uIAi0AoKkfoIxQC8DuPodwnBuiiD6JEWInApCaDkC"

 s = s +
"YdoNwVAtECHQZ4kxUDrGeAIHwTRaiMB0AsJIxQVguDeCoWQ9B3i/BYJALA1B/gGBwIgeADQoAWFcDAL4/gODUAkFgHA8BAiwEQMQfYIJThOGoAEKwqryhaCYJUD4eRUjCAqCABgoQEBlEiJ4LAiAoCEGOJob4TA7ChFgGgGIcAKhCEUKEBgYx0CHBiIAZ4FBShgEIA4a4wADA+BgGIB4oAECEAMP8Y4wgVhfFiIQGISAmCiBUKAIQkwOB6ECAQDQAqdAqGGIQEoAIeBdCgMMDgiB8AuBGJ4AQZAwAMBGBwOwMdmByCBccHQ1wyA2DIK4XoTBDALCgHAa4tALCCAsIUWI5QGjuDGEQCoShQCvEQGWf4ahGDYAuLoWAgwJgdBYGEOw3BwBMAxs8GgPgWgwDcLgJgIwYDjAuLsXAoQFg6BQJwJQIBJDIFqOQUQFA1AgACMQDwSRJglCCK0CIRhECAHqLIaYyRaAIHEEUCAsxGAlCaHkZQRg2DhwoHsIYGA7iJAUDgHgYQFNyEuBsPYthMhaBsIIBRIguYsGKMwKgYAwgmCIIgIIGgjj5AuCYeIpAIgaBwEAOQNgDAHBKC4QwEBFjcACAwaARQmDNFwEcAoDxoCkGMIYIQsxNAtCKBYGYuRCAIC8LAAgNxpASBgDwYIBADBCHAKQAAKgKjtBoEgJY2lsAQEEB4fA0Qzg/HGIMAwNAYCFAaOgBATB/g8CaBwHQcQhARAUAIAgGAwBBAkB4PIlwbAYACAMCYgBgAOB"

 s = s +
"cBAAQNQ2BBAeIcFAjgLC+EoAAO4mRzA+DGIsVIAgMBwBABNAJAwAAB1BGBBAOgkAIgOhxAMADg3BCAFhVAdAMhRBCgVgyhUhThKBQBBhLgRAbgPBchogGhUgygkAAgpg7g6ABgdgcBTg3A7hNh1A8BMA5hqhPBpAggEAtAOhnhvBOBRgEAOAIAggCgwhuhIgDnYBAgGgiQCA0g+gpiEAAAdiAg=="

 .Caption = "&Help;"
 .Image = s

 .VFit = 6

 .EndUpdate
End With

property Button.EventParam(Parameter as Long) as Variant
Retrieves or sets a value that indicates the current's event parameter.

Type Description

Parameter as Long

A long expression that indicates the index of the parameter
being requested ie 0 means the first parameter, 1 means
the second, and so on. If -1 is used the EventParam
property retrieves the number of parameters. Accessing
an not-existing parameter produces an OLE error, such as
invalid pointer (E_POINTER)

Variant A VARIANT expression that specifies the parameter's
value.

The EventParam method is provided to allow changing the event's parameters passed by
reference, even if your environment does not support changing it (uniPaas 1.5 (formerly
known as eDeveloper), DBase, and so on). For instance, Unipaas event-handling logic
cannot update ActiveX control variables by updating the received arguments. The
EventParam(0) retrieves the value of the first parameter of the event, while the
EventParam(1) = 0, changes the value of the second parameter to 0 (the operation is
successfully, only if the parameter is passed by reference). The EventParam(-1) retrieves
the number of the parameters of the current event.

Let's take the event "event KeyDown (KeyCode as Integer, ByVal Shift as Integer)", where
the KeyCode parameter is passed by reference. For instance, put the KeyCode parameter
on 0, and the arrow keys are disabled while the control has the focus.

In most languages you will type something like:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

In case your environment does not support events with parameters by reference, you can
use a code like follows:

Private Sub Control1_KeyDown(KeyCode As Integer, Shift As Integer)
 Control1.EventParam(0) = 0
End Sub

In other words, the EventParam property provides the parameters of the current event for
reading or writing access, even if your environment does not allow changing parameters by

reference.

Calling the EventParam property outside of an event produces an OLE error, such as
pointer invalid, as its scope was designed to be used only during events.

method Button.ExecuteTemplate (Template as String)
Executes a template and returns the result.

Type Description
Template as String A Template string being executed
Return Description

Variant A String expression that indicates the result after executing
the Template.

Use the ExecuteTemplate property to returns the result of executing a template file. Use the
Template property to execute a template without returning any result. Use the
ExecuteTemplate property to execute code by passing instructions as a string (template
string).

For instance, the following sample the control's background color:

Debug.Print G2antt1.ExecuteTemplate("BackColor")

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Button.Focusable as Boolean
Gets or sets a value that indicates whether the control can receive focus.

Type Description

Boolean Gets or sets a value that indicates whether the control can
receive focus.

By default, the Focusable property is True. In other words, the control receives the focus
once the user clicks the control. Use the Focusable property to prevent receiving the focus,
when user clicks the button. You can use this property to simulate buttons in a toolbar
control. The Focusable property does not specify whether the control gains or loses the
focus (changing the focus). This property has no effect if the user navigate the controls in
the form using the keyboard. The control gains the focus using the keyboard (TAB or
SHIFT+TAB) if the TabStop property of the control is True (by default). In conclusion, set
the Focusable and TabStop property on False, to prevent receiving the focus using the
mouse and the keyboard.

method Button.FocusSkin (State as StateEnum, File as String)
Specifies the skin file to display the specified state, when control has the focus.

Type Description

State as StateEnum A StateEnum expression that indicates the state skin being
changed.

File as String

A String expression that indicates the BASE64 encoded
string that holds a skin file (*.ebn), or a path to the skin
file (*.ebn). The skin file must be created using the
Exontrol's ExButton Builder. Use the Exontrol's exImages
tool to build BASE 64 encoded strings on the skin file you
have created. If the File parameter is an empty string the
skin is erased, so your button displays only the Image and
the Caption of the button without a visual appearance (
skin).

The FocusSkin method assign a new skin to the specified state. The focused skin is
displayed ONLY if the UseFocusSkin property is True, and the control has the focus. By
default, the exMAX style contains a focused skin, and changes the UseFocusSkin property
on True. Use the Skin method to assign different skins on specified states when the control
is not focused or when the UseFocusSkin property is False. Use the FocusSkin and
UseFocusSkin properties to assign a different visual appearance to the button when it has
the focus. Use the ShowFocusRect property to display a thin rectangle around the button's
caption or button's image when the button has the focus. The Style property deletes any
previous skin used. Call the FocusSkin property after Style, or Skin property if you require a
different focused skin. Use the ForeColorState property to assign a different foreground
color for certain state. Use the FocusSkinV method to load EBNs from resources.

Please be aware that Style property changes the following properties, based on the style
chosen:

AllowHotState property
UseFocusSkin property
Skin
FocusSkin

We would recommend taking a look over the following articles:

How to build my own skin file?
How do I assign a skin file to my button?

https://exontrol.com/eximages.jsp

method Button.FocusSkinV (State as StateEnum, Skin as Variant)
Specifies the skin file to display the specified state, when control has the focus.

Type Description

State as StateEnum A StateEnum expression that indicates the state skin being
changed.

Skin as Variant

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file or a String
expression that indicates the BASE64 encoded string that
holds a skin file (*.ebn), or a path to the skin file (*.ebn).
The skin file must be created using the Exontrol's ExButton
Builder. Use the Exontrol's exImages tool to build BASE
64 encoded strings on the skin file you have created. If the
File parameter is an empty string the skin is erased, so
your button displays only the Image and the Caption of the
button without a visual appearance (skin).

The FocusSkinV is similar with FocusSkin method, excepts that it can loads the EBN files
from safe arrays or in other words from resources. The button provides multiple states like:
normal, pushed, hot, disabled, custom, focused and so on. Each state has an associated
skin that's displayed when certain state occurs. The UseTransparency property specifies
whether the control supports transparency. The transparent regions in the control's skin
indicates the transparency of the button.

There are several options to provide EBN files in your project as follows:

(path) The path to the EBN file. This option is useful when your application installs files
on the client's machine so you can provide the path to EBN files.

With Button1
 .FocusSkinV exNormal, "C:\Program Files\Exontrol\EBN\vistasel.ebn"
End With

(string) The BASE64 encoded string that holds the EBN file. This option is useful if you
provide EBN objects in the control's Template page or in code. The Exontrol's
exImages tool generates BASE64 encoded strings from EBN files.

With Button1
 Dim s As String
 s =
"gBFLBCJwBAEHhEJAEGg4BHQDg6AADACAxRDAMgBQKAAzQFAYahyGCGAAGEaBQgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDGAkRRdDSOYDmGQYDiCIoRShOMIjHLUXxtDaIZwhEAoJa0HAkABRVIRNLoARTAaeJKoSboJBGGwUQjQUB1HRNDy7JasY4GURYRDKY4RDSMFiQTZNVypAaIYqqa4JPrWNYqXhAdLgAKcSTtF6ZZjkCb4apqTpNVDeWCRPkDYYDBLJNZ0LT1FYZPLDZzlCrJCiCcwAY5AdYZBiQAS5SzLIqsWx7Cq4AJtWhaVwxXIEI5CADPchveTqNrvCaZW7FdAwTq+dw1XqVczuXLsPADI6gcZNeq6Xo7GEbJZEaa4bF4bh/guUZSuUEISgGJJGHQOocgyIwZAKKhaAAIQTH2MYhjQJBRAmZ5uiQIYIjmU5dlECQBkONJ8DsTIznSYQok+Ux4hmAhgjgKgMgOYJoEYDYEmECBSA6AZPmOPJNgAIAjjiTA/E4YpIn0PJOBOdJ1DmYhoiIJ4KSyLgugqIwIjYMYKmIQ54mcLJPCOEJCSuIoSCMOBPkORJbD8DpzFYRIRiQWQeEqEhkkkIhOhKZJ5CYQg/g8Q4IncNwJmgPJ2DoJBDFoXYXk6eR6GGGAmCmFhkhmZg5iSVlLHOJJ5DaCRZGiaYRA0eZSHYO5nFmYh3h4Z5Jm4foeigAxeGwOomnmRgOD2DojnCcA2iiKgyguIxpAoPo"

https://exontrol.com/eximages.jsp
https://exontrol.com/eximages.jsp

 s = s +
"SiOKRKEaFYkmiWYwmuIRliOLhBDcKZ6gSl4qDqCokimahqiaJYqk2SYwmyJwgmOYJsD8DwjHqNItisWpejqLhrkqYo+i6a56naNw/g+E42jCApPgOOJ8gkLI5ALGpsmsRpNjSbQLFKUo0CwQ4+kcP2TEIIw5C2e4EnOOAuDu345m4a4mmWOpOEsEJxjaT4TkYJg5i8O5UnWPQvHuWp4j6b4rnaeY/k4Y54noPIvAOSJ9hacBziMCZCnCDA3AqQ4wysEpEHCHAInPqgjk8Bw6jGPB2giR4xkwfwikgchMgMJoiA+Y5snSRlLnSdw7DKbJDC+TBzEyTw2xqDJXDmTZzByJJ186axwm+UI0EOYxDlGNBdB8SpSHSTQjE4O5yhOXpbD6dAbHaXI3jUbRnFiVp1H0dxaleNZNGifg/DUKZCAaAgsy8eZGg+A5EnsPZ1guSxtjcNwtlcdJdncPZneedo7GSO4NokxYAcAUHMCwMQYjGD8OoTgRhBjEHiJwL4HRihyA4G8EYxxPCnA4GwLIHgjgZEGA4JAJhcj6DkJUaArwigJDoHAW4TQDj0AOPEcwbBhiIAQQE"

 .FocusSkinV exNormal, s
End With

In order to generate the BASE64 encoded string from your EBN file do the
following:

Run the eXImages tool

Run the Windows Explorer and select or locate the EBN file. Press the
CTRL + C or drop the EBN file in the middle panel (Drag here files such
of .bmp, .gif, .ebn, ...)

The clipboard contains the generated BASE64 string, or you can copy it
from the right panel of the eXImages tool. Generally, the string is long, so
you can use the s definition to insert it to your code.

(array) A byte[] or safe arrays of VT_I1 or VT_UI1 expression that indicates the
content of the EBN file. This option is useful if you want to provide the EBN files in the
project resources. The idea is that you have to provide a safe array of bytes to the
Skin parameter of the FocusSkinV method. For instance, the VB6 provides the
LoadResData function, the VB/NET or C# provides an internal class Resources where
all items in the resources can be accessed through public properties.

VB6

With Button1
 .FocusSkinV exNormal, LoadResData(101, "CUSTOM")
End With

In order to insert the EBN file to the project resources do the following:

Click the VB Resource Editor button in the toolbox.

Once the VB Resource Editor tool is opened, click the Add Custom
Resource ... button in the toolbox

Locate, Select the EBN file in the opened file/folder dialog, and press
Open button

The "CUSTOM"\101 item should be inserted in the resource file.

Click the Save button, so the RES file is being associated with your
project.

VB/NET

With Exbutton1
 .FocusSkinV(exNormal, WindowsApplication1.My.Resources.vistasel)
End With

In order to insert the EBN file to the project resources do the following:

Select the Project\Properties... from the VS menu

Click the Resources page

Click the Add Resource and then Add Existing File...

Locate, Select the EBN file in the opened file/folder dialog, and press
Open button

The vistasel item is being generated and so it can be accessed in code
using: WindowsApplication1.My.Resources.vistasel

C#

exbutton1.FocusSkinV(exNormal,
WindowsApplication1.Properties.Resources.vistasel);

In order to insert the EBN file to the project resources do the following:

Select the Project\Properties... from the VS menu

Click the Resources page

Click the Add Resource and then Add Existing File...

Locate, Select the EBN file in the opened file/folder dialog, and press
Open button

The vistasel item is being generated and so it can be accessed in code
using: WindowsApplication1.Properties.Resources.vistasel

property Button.Font as IFontDisp
Retrieves or sets the control's font.

Type Description
IFontDisp A Font object being used.

Use the Font property to assign a new font to the control. Use the HTML tags like to
bold parts of control's caption. Use the Caption property to assign a caption to the button.
The font must be of type StdFont in the OLE Automation type library. When the control is
initially placed on a form or other container object, the Font property will automatically be
set to the "Arial" font.

property Button.ForeColor as Color
Specifies the control's foreground color.

Type Description

Color A color expression that indicates button's foreground
color.

Use the ForeColor property to assign a foreground color to your button. Use the HTML tags
like <fgcolor>, <bgcolor> in the Caption property to colorize parts of the caption. Use the
ForeColorState property to assign a color for a given state. Use the ForeColorState
property to assign a foreground color when control is disabled.

property Button.ForeColorState(State as StateEnum) as Color
Specifies the foreground color for a specified state.

Type Description

State as StateEnum A StateEnum expression that indicates the foreground's
color being changed.

Color A Color expression being used when the control's State
property is State.

Use the ForeColorState property to assign foreground colors for states of the button. The
ForeColor and ForeColorState(exNormal) are equivalents.

property Button.FormatAnchor(New as Boolean) as String
Specifies the visual effect for anchor elements in HTML captions.

Type Description

New as Boolean A Boolean expression that indicates whether to specify the
anchors never clicked or anchors being clicked.

String A String expression that indicates the HTMLformat to
apply to anchor elements.

By default, the FormatAnchor(True) property is "<u><fgcolor=0000FF>#" that indicates
that the anchor elements (that were never clicked) are underlined and shown in light blue.
Also, the FormatAnchor(False) property is "<u><fgcolor=000080>#" that indicates that the
anchor elements are underlined and shown in dark blue. The visual effect is applied to the
anchor elements, if the FormatAnchor property is not empty. For instance, if you want to do
not show with a new effect the clicked anchor elements, you can use the
FormatAnchor(False) = "", that means that the clicked or not-clicked anchors are shown
with the same effect that's specified by FormatAnchor(True). An anchor is a piece of text
or some other object (for example an image) which marks the beginning and/or the end of a
hypertext link. The <a> element is used to mark that piece of text (or inline image), and to
give its hypertextual relationship to other documents. The control fires the AnchorClick event
to notify that the user clicks an anchor element. This event is fired only if prior clicking the
control it shows the hand cursor. The AnchorClick event carries the identifier of the anchor,
as well as application options that you can specify in the anchor element. The hand cursor
is shown when the user hovers the mouse on the anchor elements.

property Button.HFit as Long
Specifies a value that indicates the horizontal offset to fit image with the caption.

Type Description

Long A long expression that indicates the the horizontal offset to
fit image with the caption.

By default, the HFit property is 0(zero). Use the VFit, HFit, IncClientSide properties to
adjust the control's client area and to organize the image and the caption positions in the
control's client area.

property Button.HTMLPicture(Key as String) as Variant
Adds or replaces a picture in HTML captions.

Type Description

Key as String
A String expression that indicates the key of the picture
being added or replaced. If the Key property is Empty
string, the entire collection of pictures is cleared.

Variant

The HTMLPicture specifies the picture being associated to
a key. It can be one of the followings:

a string expression that indicates the path to the
picture file, being loaded.
a string expression that indicates the base64 encoded
string that holds a picture object, Use the eximages
tool to save your picture as base64 encoded format.
A Picture object that indicates the picture being added
or replaced. (A Picture object implements IPicture
interface),

If empty, the picture being associated to a key is removed.
If the key already exists the new picture is replaced. If the
key is not empty, and it doesn't not exist a new picture is
added.

The HTMLPicture property handles a collection of custom size picture being displayed in the
HTML captions, using the tags. By default, the HTMLPicture collection is empty. Use
the HTMLPicture property to add new pictures to be used in HTML captions. For instance,
the HTMLPicture("pic1") = "c:\winnt\zapotec.bmp", loads the zapotec picture and
associates the pic1 key to it. Any "pic1" sequence in HTML captions, displays
the pic1 picture. On return, the HTMLPicture property retrieves a Picture object (this
implements the IPictureDisp interface). Use the Caption property to specify the caption of
the button, using HTML format.

https://exontrol.com/eximages.jsp

property Button.hWnd as Long
Retrieves the control's window handle.

Type Description

Long A long expression that indicates the handle of the control's
window.

This property is useful for executing certain API calls. The property is read only at runt time.

property Button.Image as Variant
Specifies the image being displayed.

Type Description

Variant

A long expression that indicates the index of icon being
displayed, a string expression that specifies the path to a
picture file, a Picture object being displayed, a string
expression that indicates the BASE64 encoded string that
holds a picture/image object. Use the eximages tool to
save your picture as base64 encoded format., or a
IPictureDisp object that holds the picture being displayed
on the button.

Use the Image property to assign a picture to your button. Use the Images property to add
icons to the control. If you have multiple icons added to the Images collection you can use
long expression to change the index of icon being displayed. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection. Use the
ImageAlignment property to align the image in the button. Use the ImageVAlignment
property to align vertically the image in the button. Use the Caption property to assign a
caption to the button. Use the Style or Skin property to change the visual appearance for
your button. Use the HTML tag to insert icons inside the button's caption.

The following sample loads the picture from a file:

With Button1
 .Image = "D:\temp\icons\settings.gif"
End With

The following sample assigns the first icon from an ImageList control:

With Button1
 .Images ImageList1.hImageList
 .Image = 1
End With

The following sample assigns a Picture objects:

With Button1
 .Image = Picture1.Picture
End With

https://exontrol.com/eximages.jsp

The following sample loads the picture from an BASE64 encoded string (Use the eximages
tool to save your picture as base64 encoded format)

With Button1
 Dim s As String
 s =
"gBHJJGHA5MIwAEIe4AAAFhwbiAliQwig7ixFjBQjRbjhljxwkB7kSFkiQkyblCllSwli7lzFmDQmTbmjlmzwnD7nQBnk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1YhgAEL5AgBhj/AAssMJthABFof4JDhIWCgYKDBATFT8M6hUIFAQAEQCCDwYF/QoWDZCRBgOKgIYHCQXMisKBAEQAAgOBZaSgQhjERANKQiZhIWamYyIBQ6FzcNKxQLJT4ADA4RjwObAAidBYdHwABQgUxMQYZEI0cD4OgnYKaKyzIRFNQx2YCKoFHScYD0ADXQwUAgwLoLQDqaCWBJoNQ9NBxFJTVQORgiarqSABbamGwtDAwBUWhQmqYALnOFQvGYPA4m6AwKhkZxKj2PBWC0SZCgmVY6CwIJgieBAniubRKHgaYgiwQwGiCfxGDWbBRmGZYIi2VwGnAexxGUSwUFiaR+hQPbBgOCoLCIHh4DAARCmQG4AlgNxuhwWgpFAEQUhuOxOk0NrhAaQoBmgPYdFSIZPjYGYbn+HhgEoAA7HMBIOjUM51AoPojHkEwVlET5slgWZtAEUBdjeSoeF6X5/rQRRSi+QB6GychsEAfZshKYABGQZorlAOgMBqEgAjYHB2jqSoigmYBLk+QZnBqGhggAEwImgbojgoIwSE+MxUHiS4REQCQWluD48B+JJoL+YQikuaI9AALgLmsJQfnSdAvDkCJEhIIIBgOegLEiPBqCyCA"

 s = s +
"AjcCwgAAIJBhQBQkHGL4gDaNBokkZQMiwUAuioJQiCAQYsHMcwwEIeoigAYIogsGIwFKIYICIWguEoPgQhsawBASGgwCuJwLH8K4LigAIaDwbxMAOKxbisPwfASQATFASoagIEYwgcSoKGiAA/mEdIuiGPxCmObIlhMIJNHONxFH8EpPCGeB+noEpBBSSRjCsPZEiyKhgjAH5whSdLEjwDxjC8TxVEMFRzFWJJZBUSI0gQEQLBOM4VHkIg1D0CAJDQNg/p4AAdoC"

 .Image = s
End With

The following sample displays the first icon in the Images collection:

With Button1
 .Images
"gBJJgBAICAAGAAEAAQhYAf8Pf4hh0QihCJo2AEZjQAjEZFEaIEaEEaAIAkcbk0olUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwWDwDAwwAwzAssQACAx2EuuJxGHyWSqmMyWYymHxyAyFoyubxWhxWMxlMzMPib/yej0WtxuPz9ey0a0mw02q3Osoma0uqy2ejPC2+zrO1jPI2Gp1md1fP3c95nP4PJw+N62K41Y50b5XT6PO53RnHT82cx/V2HbqeS7u29Ge6fj3X11nKnG+6HA1/Y4bsti4T2Ka273wA6LGPEx7yJ3BD7P2+7XuLAaqNu+aNQdCLtJ++bHwUzz6NY/T8Qoq8Mv9FEGJ890Fwe8MPRbDUSrJE8SKFEMIQDHMcRmtUVKTH7ownHsiSLI0jyKiwfJXJaPJAkSSAAkqUSm/LVSQmiKI2eZ/n43iMnAf54B+jZwB+cAHu8B5wAO7wBzYjZAADOCNTkYE2o2AZgAGlE9T5OoDz3MtAz+jJ8TXQoAH8B54USf5PnzNMMNOjKAg="

 .Image = 1
End With

All of the properties and methods for all objects in the Exontrol's exButton can be assigned
at design time using the WYSWYG Template /Layout editor. Open the control in design
mode, and select Properties from its context menu. The Template language uses the x-
script language (very simple), that can be used to initializes the properties and methods at
design time.

The following sample initializes the control's image and caption at design mode, using the
Template page:

' Specifies the control's caption
Caption = "Exontrol's exButton component is our answer to your GUI needs"
WordWrap = True

' https://www.exontrol.com/sg.jsp?content=support/faq#eximages

https://exontrol.com/eximages.jsp
https://exontrol.com/faq.jsp?F=template

Image =
"gBHJJGHA5MIwAEIe4AAAFhwbiAliQwig7ixFjBQjRbjhljxwkB7kSFkiQkyblCllSwli7lzFmDQmTbmjlmzwnD7nQBnk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1YhgAEL5AgBhj/AAssMJthABFof4JDhIWCgYKDBATFT8M6hUIFAQAEQCCDwYF/QoWDZCRBgOKgIYHCQXMisKBAEQAAgOBZaSgQhjERANKQiZhIWamYyIBQ6FzcNKxQLJT4ADA4RjwObAAidBYdHwABQgUxMQYZEI0cD4OgnYKaKyzIRFNQx2YCKoFHScYD0ADXQwUAgwLoLQDqaCWBJoNQ9NBxFJTVQORgiarqSABbamGwtDAwBUWhQmqYALnOFQvGYPA4m6AwKhkZxKj2PBWC0SZCgmVY6CwIJgieBAniubRKHgaYgiwQwGiCfxGDWbBRmGZYIi2VwGnAexxGUSwUFiaR+hQPbBgOCoLCIHh4DAARCmQG4AlgNxuhwWgpFAEQUhuOxOk0NrhAaQoBmgPYdFSIZPjYGYbn+HhgEoAA7HMBIOjUM51AoPojHkEwVlET5slgWZtAEUBdjeSoeF6X5/rQRRSi+QB6GychsEAfZshKYABGQZorlAOgMBqEgAjYHB2jqSoigmYBLk+QZnBqGhggAEwImgbojgoIwSE+MxUHiS4REQCQWluD48B+JJoL+YQikuaI9AALgLmsJQfnSdAvDkCJEhIIIBgOegLEiPBqCyCAAjcCwgAAIJBhQBQkHGL4gDaNBokkZQMiwUAuioJQiCAQYsHMcwwEIeoigAYIogsGIwFKIYICIWguEoPgQhsawBASGgwCuJwLH8K4LigAIaDwbxMAOKxbisPwfASQATFASoagIEYwgcSoKGiAA/mEdIuiGPxCmObIlhMIJNHONxFH8EpPCGeB+noEpBBSSRjCsPZEiyKhgjAH5whSdLEjwDxjC8TxVEMFRzFWJJZBUSI0gQEQLBOM4VHkIg1D0CAJDQNg/p4AAdoC"

The button's visual appearance in this case will be:

property Button.ImageAlignment as AlignmentEnum
Specifies the image's alignment.

Type Description

AlignmentEnum An AlignmentEnum expression that indicates the image's
alignment.

Use the Image property to load an image in the button. Use the ImageAlignment property to
align the button's image. Use the ImageVAlignment property to vertically align the image in
the button. By default, the ImageAlignment property is exCenter. Use the Alignment
property to align the caption in the control. Use the VFit, HFit, IncClientSide properties to
adjust the control's client area and to organize the image and the caption positions in the
control's client area

method Button.Images (Handle as Variant)
Sets at runtime the control's image list. The Handle should be a handle to an Image List
Control.

Type Description

Handle as Variant

The Handle parameter can be:

A string expression that specifies the ICO file to add.
The ICO file format is an image file format for
computer icons in Microsoft Windows. ICO files
contain one or more small images at multiple sizes
and color depths, such that they may be scaled
appropriately. For instance,
Images("c:\temp\copy.ico") method adds the sync.ico
file to the control's Images collection (string, loads the
icon using its path)
A string expression that indicates the BASE64
encoded string that holds the icons list. Use the
Exontrol's ExImages tool to save/load your icons as
BASE64 encoded format. In this case the string may
begin with "gBJJ..." (string, loads icons using base64
encoded string)
A reference to a Microsoft ImageList control
(mscomctl.ocx, MSComctlLib.ImageList type) that
holds the icons to add (object, loads icons from a
Microsoft ImageList control)
A reference to a Picture (IPictureDisp implementation)
that holds the icon to add. For instance, the VB's
LoadPicture (Function LoadPicture([FileName], [Size],
[ColorDepth], [X], [Y]) As IPictureDisp) or
LoadResPicture (Function LoadResPicture(id, restype
As Integer) As IPictureDisp) returns a picture object
(object, loads icon from a Picture object)
A long expression that identifies a handle to an Image
List Control (the Handle should be of HIMAGELIST
type). On 64-bit platforms, the Handle parameter
must be a Variant of LongLong / LONG_PTR data
type (signed 64-bit (8-byte) integers), saved under
llVal field, as VT_I8 type. The LONGLONG /
LONG_PTR is __int64, a 64-bit integer. For instance,
in C++ you can use as Images(COleVariant(
(LONG_PTR)hImageList)) or Images(COleVariant(

https://exontrol.com/eximages.jsp

(LONGLONG)hImageList)), where hImageList is of
HIMAGELIST type. The GetSafeHandle() method of
the CImageList gets the HIMAGELIST handle (long,
loads icon from HIMAGELIST type)

Use the Images method to load a list of icons to the button. The ImageSize property
defines the size (width/height) of the icons within the control's Images collection. Use the
Image property to assign a picture/image to the button.

The following sample adds two icons to the control's images list and change the button's
icon when user clicks the button:

Private Sub Button1_Click()
With Button1
 .BeginUpdate
 .Image = (.Image) Mod 2 + 1
 .EndUpdate
End With
End Sub

Private Sub Form_Load()
With Button1
 .BeginUpdate
 .Mode = exPushLike
 .Images
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wGBwV/QGFiT/weJrcPw4AYGPxuKyVKwqAxuMx7AxuZyOTz09xmYyGhh2O0elzmMz+rl2Vy+o0+I1Ol0Wa2ud1mf0my2Ob3sYy3A3220u5yWu1235XFAGW2eI4Wq42e6ENjPIw3L6uW3fX3HT43V7eG5OwzXC6PM8HrlnYy3u4ff9nz1vk+3vw30/U6+H7/z/wBAMBJ4iofJVAyOo+kKRgAkiTwcm7pQGlL1IwebqoycEMIwcAfpSYAHw+AaUkBCDrxMjMRpTFSNEAA6UnBF6TnxEKTn9GqNH+T8KQ2ACAg=="

 .Images
"gBJJgBggAAwAAgACEKAD/hz/EMNh8TIRNGwAjEZAEXjAojJAjIgjIBAEijUlk8plUrlktl0vmExmUzmk1m03nE5nU7nk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1fsFhsVjslls1ntFptVrtltt1vuFxuVzul1u13vF5vV7vl9v1/wE8QCAjGDwOHsDAxUSf+MAGGxGRp+Qh+OyuKYAAzGPwmSz1DzeXxeb0mLweEyuQz+rmWUh2W1+lzOb0+wxupzus3UZ0Ox0e/2emw2V4mv0XBzO7xGu2/G33IzXC1HOxuy6PQ5WH3vV4HX7214vN8XezfZ1nh8nd8HU73m90w9Hr8e4wnW8vv/Er+PD9no+78wAjL6Nslj/wDA6UvQjTjwRBqWvQysHQlCbWIqHyVQujqPpCkYAJIk8PpvCMKJUebGpOcETo0cAfpSYAHxcAaUtyjUaJfEKMkBHCMGBHYAHglR/JVFUFmDBJxpSgI"

 .Image = 1
 .EndUpdate
End With
End Sub

property Button.ImageSize as Long
Retrieves or sets the size of icons the control displays.

Type Description

Long A long expression that defines the size of icons the control
displays.

By default, the ImageSize property is 16 (pixels). The ImageSize property specifies the size
of icons being loaded using the Images method. The control's Images collection is cleared if
the ImageSize property is changed, so it is recommended to set the ImageSize property
before calling the Images method. The ImageSize property defines the size (width/height)
of the icons within the control's Images collection. For instance, if the ICO file to load
includes different types the one closest with the size specified by ImageSize property is
loaded by Images method. The ImageSize property does NOT change the height for the
control's font.

property Button.ImageVAlignment as VAlignmentEnum
Specifies the image's vertical alignment.

Type Description

VAlignmentEnum A VAlignmentEnum expression that indicates the vertical
alignment for the button's image.

Use the Image property to assign an image to the button. By default, the ImageVAlignment
property is exMiddle. Use the ImageVAlignment property to change the vertical alignment
for the button's image. Use the ImageAlignment property to change the horizontal alignment
for the image. Use the VFit, HFit, IncClientSide properties to adjust the control's client area
and to organize the image and the caption positions in the control's client area

property Button.IncClientState(State as StateEnum, Side as SideEnum)
as Long
Adjusts the control's client area for the specified side and state.

Type Description

State as StateEnum A StateEnum expression that indicates the State's client
area being changed.

Side as SideEnum A SideEnum expression that indicates the side being
changed.

Long A long expression that indicates the offset used to indent
the button's client area, in pixels.

The Caption and the Image property are displayed on the button's client area. Each skin
defines an area called client area. On the client area of the skin you can get displayed the
'Caption' string. The control's client area and the button's client area is different. The
control's client area is determined by the control's window, since the button's client area is
determined by the properties BorderWidth, BorderHeight, and IncClientState. Use the
IncClientState(exPushed) property to indent the area where the Image and the Caption of
the button are displayed. By default the IncClientState(exPushed, exLeftSide) and
IncClientState(exPushed, exLeftSide) are 2. Set IncClientState(exPushed, exLeftSide)
and IncClientState(exPushed, exTopSide) on 0 (zero) to avoid indenting the area where
the Image and the Caption of the button are displayed. The Style property changes the
IncClientState property based on each style.

property Button.Mode as ModeEnum
Specifies the control's mode.

Type Description

ModeEnum A ModeEnum expression that indicates how the button's
state is changed when the user clicks the button.

By default, the control's Mode property is exButton. The State property is changed by the
control depending on the control's Mode property. Use the Style or Skin property to change
the visual appearance for the button. The control fires the Click event when user clicks the
button. The control fires also the Click event if the button has the focus, and the user
releases the SPACE key. Use the KeyDown event to avoid firing the Click event when user
presses the SPACE key like in the following sample:

Private Sub Button1_KeyDown(KeyCode As Integer, Shift As Integer)
 KeyCode = 0
End Sub

property Button.MouseIcon as IPictureDisp
Sets or returns a value that determines a custom Icon to be displayed when the pointer
moves over the control.

Type Description

IPictureDisp
A reference to an Icon object. Can be a reference to
another object​s Picture property or loaded using the
LoadPicture method, but the graphic must be of type Icon.

The MouseIcon property is ignored until the MousePointer value is set to 99

The following VB sample shows how you can display a cursor using an ICO file (32x32)

With Button1
 .MouseIcon = LoadPicture(App.Path + "\cursor.ico")
 .MousePointer = 99
End With

property Button.MousePointer as Long
Sets or returns a value that determines the MousePointer to be displayed when the pointer
moves over the control.

Type Description

Long A long expression that indicates the MousePointer to be
displayed, as described below.

When MousePointer is set to exCustom, the control will use the icon that is set in the
MouseIcon property. The valid values for the MousePointer property are:

0 - exDefault Default MousePointer
1 - exArrow Arrow
2 - exCrossHair Crosshair
3 - exIBeam Ibeam
4 - exIconPointer Icon
5 - exSizePointer Size
6 - exSizeNESW Size Northeast / Southwest
7 - exSizeNW Size North / West
8 - exSizeNWSE Size Northwest / Southeast
9 - exSizeWE Size West / East
10 - exUpArrow Up arrow
11 - exHourglass Hourglass
12 - exNoDrop "No" symbol

13 - exArrowHourglass Arrow with hourglass
14 - exArrowQuestion Arrow with question mark
15 - exSizeAll Size all
16 - exPointer Hand

99 - exCustom Custom pointer, set in MouseIcon property

property Button.Picture as IPictureDisp
Retrieves or sets a graphic to be displayed in the control.

Type Description
IPictureDisp A Picture object being loaded on the control's background.

Use the BorderWidth and BorderHeight properties to specify the control's border. The
Picture property doesn't affect the skin used unless it contains transparent areas. Use the
ForeColor property to change the control's foreground color. Use the Image property to
assign a new image to the button (this is displayed on the button's skin not on the control's
background). Use the PictureDisplay property to specify how the picture is layered on the
control's background. Use the HTMLPicture property to display custom size pictures
anywhere in the button's caption, using the tag.

As BackColor property, the Picture property doesn't affect the opaque areas in the current
skin. The following sample changes the control's picture on the background :

With Button1

 .BorderHeight = 20
 .BorderWidth = 20

 .Picture = LoadPicture("C:\WINNT\Web\tips.gif")
 .PictureDisplay = Tile

 Dim s As String
 s =
"gBHJJGHA5MJAAEIe4AAAFh0OCERiQbigwEobAsXCAljkcHYwDYQkAli0iGAwHYlCA7HZQIpFKExLcxMpbLc1LZ7MplQpwIpbOBwPdBnpwSFDPdJo57TZ7XbwQskQpQEqFLdVOCFrSbrSlQqQr1PQrFfaQiKQq9oGCQMolSFgSCbWFxXdgYqQWDQSC7bd7eCQYrlwFlaD7TcRTcxxJbTdtxowTZwEqbuKbuVyaCbvibYrwTeFTbbfalyWkGClyylUqw1S71euXbFUq7cqlaG1aDwUuiUrlfawiiwyXCOHCPdzMqwWC75TF5fOwKwbbwWG+XccXcsXZ7Eq7XbQ2Pg2/feFPfbFhzFk7Fl7FmLFnbF7jFQucSAwYqbUrF7zFYpoP+cpim3ARywEeB9mghxoIiaCTmgmxoD2QpoEKDcKwo+69EgzIYGgUooPAz5oG3Ehym2jhtpObaWG2l5tpibabm2nZtqCbatL6Eq+hgbZNx6WAtm2XZCm2/JtwI0R9nKHYinKmxyp2cqgnKrTBEgcpNg3LJNnLE0DQMeB4IieCOHgk54JeeCYqgQrqB26hYPKLbyqe+B4G2UsxT2fZ9ocfaKH2jh9pOfaWH2l59pifabH2nZ9qCfakn2rSykgwxNtGUp9u886yGgMsEsKvp9yRJbfPKfcxT6Xc+rJPoA1jWVZ1pWtbVvXFc11XdeV7X1f2BYNdoYAAQnyAgAoYf4ABZYiE2eIAEWWf4Eg4JBYFAYJBgQCYVC4LAIGYDZDlOGR"

 s = s +
"mm0IpYjEUogW2JJtCwVBpFIJQKhWYQdAKUwSAwCYGAqSw+DmBRrFYS4YH+AhNiSGYMBaTAcDOJJVByeYrGcLJXG8aBQECGRyl+SpTisFIumUWg0mmHwyDULwxFIYgjkSCQZDMZAUFCYhlk8GhHCcToJCUEZAiiUgxGmVQuhWexmiYGoYD8AAwnkYomlGXYZm6Ph8mkZBGm+XZAA2dowDAOhQASSZVAkFYvFYHA1BgFQXD8LhclkMhkkqXo7AGG5xBySZlgKABCguGwYBiWgaEaEw4ikQ4sm6Qg0EOBQKBcNgMBiMQBkKBIIggAgAGAIBAAAERFnYQh9CIZIoQ4ZBJhWXg4gMK5Xi8XQjAia45EGUO9BYaY3C0RQVHaTZDmuRYVH+I58LAUwtFAaRTnuSZFlmPZPF4ahTlOSoEmYKB4jOJZPCUepVF+P5/loagaGX9w6kkQoXk4NphCsLR7nKMcKQJgIBGBQOEQgEQdBmGUB4GAyAACEDKHsOo+AChlEqF0WwlwKhTGoGAIQARCiZCIOERQEwHDCCGAkEIfgIhjC6HYAooxMhmCoFgGA3gfilECOEA4KwgAGBSOQFYtRqBiEMAgGIiBEDZEaDUSoshAgKCkEwWA4xKDjByIEBALhfhABOB0EoZQqBHHKJcFIfQ4BGBEDgUgURCAEFCF0U45hNAlGiAAcwWRwBlHOAoFAvhqBpHOJ0PAzhZDKCwCYXI+RzBRHKJ0YQygWiEAkGoBYIBJi8GOFkFwtgKB6EWC0T"

 s = s +
"SWBzh4CQMEIQyxSiYAMOILwfBMDSDEAt/DXB0ilFYJAQoXwlBIFqBIZYqhWDGHkAgM4tRaD/BUKsDgnBsiyHUCsVYdBrjWCgGYUIChogqFaAQFY7BYDEAsMsZIgROCVCkEkEgkRWCSASFsew0RACiDqBAUoYh2i1GwGYPYrQTBiGgIQBIIwrDJCqNkCQTHEjZFyEtnABgNBwExB4AYvhBCxHALwbwIQsQLBIPwYAYQzB3D6MEQgXwPDSgoBUGwgBLASAaPoaIOxXgqEsKgKIwhDCXHiBsRgXh+DeDwBcC4aALCGBgBgVAdB2DxGOCAYYcQDgmCKMgIALgJhAC4FEWIxQaABFsMIAYygQhMAGBwJwNRigJCaDsWgkB5CHBEK4XgGQnhcCgCAYAlxSCVGsAQE4xQJBLEMAYFgWAoiXGKHcDoQRggOC2IgYAiAKA7CIHEJAGQ/j+EmMANApBcgrFsLsBoJAACAGCAwGoBxGCWGINESIQxrhwAOIEA4lg2BTFFWsOFJAhBzGeOkf4khDgQCGOQTo9xshoBGMcUwmhBCnFyOYO4jAZjOHMKQRICxyCQCSNkUIQhyAuDwNYPICwWiuB4AsLwmxEhPH8J0UAtx4BiH0OkVApxHB6BaAoeweR1CUFEJ8UQyQWi5GoF4XYJw/hUEEKAPYvhEACEVPka4khkhDCGH0DIO7RAkE+DwFA7AUi6HSKMZQgxRBJFoK8U4uIAi0AoKkfoIxQC8DuPodwnBuiiD6JEWInApCaDkC"

 s = s +
"YdoNwVAtECHQZ4kxUDrGeAIHwTRaiMB0AsJIxQVguDeCoWQ9B3i/BYJALA1B/gGBwIgeADQoAWFcDAL4/gODUAkFgHA8BAiwEQMQfYIJThOGoAEKwqryhaCYJUD4eRUjCAqCABgoQEBlEiJ4LAiAoCEGOJob4TA7ChFgGgGIcAKhCEUKEBgYx0CHBiIAZ4FBShgEIA4a4wADA+BgGIB4oAECEAMP8Y4wgVhfFiIQGISAmCiBUKAIQkwOB6ECAQDQAqdAqGGIQEoAIeBdCgMMDgiB8AuBGJ4AQZAwAMBGBwOwMdmByCBccHQ1wyA2DIK4XoTBDALCgHAa4tALCCAsIUWI5QGjuDGEQCoShQCvEQGWf4ahGDYAuLoWAgwJgdBYGEOw3BwBMAxs8GgPgWgwDcLgJgIwYDjAuLsXAoQFg6BQJwJQIBJDIFqOQUQFA1AgACMQDwSRJglCCK0CIRhECAHqLIaYyRaAIHEEUCAsxGAlCaHkZQRg2DhwoHsIYGA7iJAUDgHgYQFNyEuBsPYthMhaBsIIBRIguYsGKMwKgYAwgmCIIgIIGgjj5AuCYeIpAIgaBwEAOQNgDAHBKC4QwEBFjcACAwaARQmDNFwEcAoDxoCkGMIYIQsxNAtCKBYGYuRCAIC8LAAgNxpASBgDwYIBADBCHAKQAAKgKjtBoEgJY2lsAQEEB4fA0Qzg/HGIMAwNAYCFAaOgBATB/g8CaBwHQcQhARAUAIAgGAwBBAkB4PIlwbAYACAMCYgBgAOB"

 s = s +

"cBAAQNQ2BBAeIcFAjgLC+EoAAO4mRzA+DGIsVIAgMBwBABNAJAwAAB1BGBBAOgkAIgOhxAMADg3BCAFhVAdAMhRBCgVgyhUhThKBQBBhLgRAbgPBchogGhUgygkAAgpg7g6ABgdgcBTg3A7hNh1A8BMA5hqhPBpAggEAtAOhnhvBOBRgEAOAIAggCgwhuhIgDnYBAgGgiQCA0g+gpiEAAAdiAg=="

 .Caption = "&Help;"
 .Image = s
 .VFit = 6
End With

Please notice that the only the control's background is affected. Use the Skin property to
change the button's skin.

property Button.PictureDisplay as PictureDisplayEnum
Retrieves or sets a value that indicates the way how the graphic is displayed on the
control's background

Type Description

PictureDisplayEnum A PictureDisplayEnum expression that indicates how the
Picture property is displayed on the control's background.

Use the Picture property to assign a picture on the control's background. Use the
PictureDisplay property to arrange the Picture on the control's background. Use the Image
property to assign an image/picture to the button. Use the Style, Skin property to specify
the button's visual appearance.

method Button.Refresh ()
Refreshes the control.

Type Description

Use the Refresh method to refresh the control, if required. Use the BeginUpdate and
EndUpdate methods to maintain performance while multiple changes need to be applied to
the control.

property Button.RenderType as Long
Specifies the way colored EBN objects are displayed on the component.

Type Description

Long A long expression that indicates how the EBN objects are
shown in the control, like explained bellow.

By default, the RenderType property is 0, which indicates an A-color scheme. The
RenderType property can be used to change the colors for the entire control, for parts of
the controls that uses EBN objects. The RenderType property is not applied to the currently
XP-theme if using.

The RenderType property is applied to all parts that displays an EBN object. The properties
of color type may support the EBN object if the property's description includes "A color
expression that indicates the cell's background color. The last 7 bits in the high significant
byte of the color to indicates the identifier of the skin being used. In other words, a
property that supports EBN objects should be of format 0xIDRRGGBB, where the ID is the
identifier of the EBN to be applied, while the BBGGRR is the (Red,Green,Blue, RGB-
Color) color to be applied on the selected EBN. For instance, the 0x1000000 indicates
displaying the EBN as it is, with no color applied, while the 0x1FF0000, applies the Blue
color (RGB(0x0,0x0,0xFF), RGB(0,0,255) on the EBN with the identifier 1. You can use
the EBNColor tool to visualize applying EBN colors.

Click here to watch a movie on how you can change the colors to be applied on EBN
objects.

In the following screen shot the following objects displays the current EBN with a different
color:

"A" in Red (RGB(255,0,0), for instance the bar's property exBarColor is 0x10000FF
"B" in Green (RGB(0,255,0), for instance the bar's property exBarColor is 0x100FF00
"C" in Blue (RGB(0,0,255), for instance the bar's property exBarColor is 0x1FF0000
"Default", no color is specified, for instance the bar's property exBarColor is
0x1000000

The RenderType property could be one of the following:

-3, no color is applied. For instance, the BackColorHeader = &H1FF0000 is displayed
as would be .BackColorHeader = &H1000000, so the 0xFF0000 color (Blue color) is
ignored. You can use this option to allow the control displays the EBN colors or not.

https://exontrol.com/skintut.jsp#colors
https://www.youtube.com/watch?v=-PcCepMVclQ

-2, OR-color scheme. The color to be applied on the part of the control is a OR bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the OR bit for the entire Blue channel, or in
other words, it applies a less Blue to the part of the control. This option should be used
with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

-1, AND-color scheme, The color to be applied on the part of the control is an AND bit
combination between the original EBN color and the specified color. For instance, the
BackColorHeader = &H1FF0000, applies the AND bit for the entire Blue channel, or in
other words, it applies a more Blue to the part of the control. This option should be
used with solid colors (RGB(255,0,0), RGB(0,255,0), RGB(0,0,255), RGB(255,255,0),
RGB(255,0,255), RGB(0,255,255),RGB(127,0,0),RGB(0,127,0), ...)

0, default, the specified color is applied to the EBN. For instance, the

BackColorHeader = &H1FF0000, applies a Blue color to the object. This option could
be used to specify any color for the part of the components, that support EBN objects,
not only solid colors.

0xAABBGGRR, where the AA a value between 0 to 255, which indicates the
transparency, and RR, GG, BB the red, green and blue values. This option applies the
same color to all parts that displays EBN objects, whit ignoring any specified color in
the color property. For instance, the RenderType on 0x4000FFFF, indicates a 25%
Yellow on EBN objects. The 0x40, or 64 in decimal, is a 25 % from in a 256 interal, and
the 0x00FFFF, indicates the Yellow (RGB(255,255,0)). The same could be if the
RenderType is 0x40000000 + vbYellow, or &H40000000 + RGB(255, 255, 0), and so,
the RenderType could be the 0xAA000000 + Color, where the Color is the RGB format
of the color.

The following picture shows the control with the RenderType property on 0x4000FFFF
(25% Yellow, 0x40 or 64 in decimal is 25% from 256):

The following picture shows the control with the RenderType property on 0x8000FFFF
(50% Yellow, 0x80 or 128 in decimal is 50% from 256):

The following picture shows the control with the RenderType property on 0xC000FFFF
(75% Yellow, 0xC0 or 192 in decimal is 75% from 256):

The following picture shows the control with the RenderType property on 0xFF00FFFF
(100% Yellow, 0xFF or 255 in decimal is 100% from 255):

method Button.ReplaceIcon ([Icon as Variant], [Index as Variant])
Adds a new icon, replaces an icon or clears the control's image list.

Type Description

Icon as Variant

A Variant expression that specifies the icon to add or
insert, as one of the following options:

a long expression that specifies the handle of the icon
(HICON)
a string expression that indicates the path to the
picture file
a string expression that defines the picture's content
encoded as BASE64 strings using the eXImages tool
a Picture reference, which is an object that holds
image data. It is often used in controls like
PictureBox, Image, or in custom controls (e.g.,
IPicture, IPictureDisp)

If the Icon parameter is 0, it specifies that the icon at the
given Index is removed. Furthermore, setting the Index
parameter to -1 removes all icons.

By default, if the Icon parameter is not specified or is
missing, a value of 0 is used.

Index as Variant

A long expression that defines the index of the icon to
insert or remove, as follows:

A zero or positive value specifies the index of the icon
to insert (when Icon is non-zero) or to remove (when
the Icon parameter is zero)
A negative value clears all icons when the Icon
parameter is zero

By default, if the Index parameter is not specified or is
missing, a value of -1 is used.

Return Description

Long A long expression that indicates the index of the icon in the
images collection

Use the ReplaceIcon property to add, remove or replace an icon in the control's images

https://exontrol.com/eximages.jsp

collection. Also, the ReplaceIcon property can clear the images collection. Use the Images
method to attach an image list to the control.

The following sample shows how to add a new icon to control's images list:

 i = Button1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle), where i is the index to
insert the icon

The following sample shows how to replace an icon into control's images list::

 i = Button1.ReplaceIcon(LoadPicture("d:\icons\help.ico").Handle, 0), in this case the i is
zero, because the first icon was replaced.

The following sample shows how to remove an icon from control's images list:

 Button1.ReplaceIcon 0, i, in this case the i must be the index of the icon that follows to be
removed

The following sample shows how to clear the control's icons collection:

 Button1.ReplaceIcon 0, -1

property Button.Rotate as HTMLRotateEnum
Rotates the HTML caption.

Type Description

HTMLRotateEnum A HTMLRotateEnum expression that specifies how the
control displays the HTML caption.

By default, the Rotate property is exHTMLHorizontal, which indicates that the text is
displayed horizontally. The Rotate property rotates or displays in mirror the HTML caption.
The Rotate property can be one of the following:

exHTMLHorizontal, displays horizontally the caption
exHTMLHorizontal + exHTMLMirror, displays horizontally the caption, in the mirror

exHTMLVertical, displays vertically the caption
exHTMLVertical + exHTMLMirror, displays vertically the caption, in the mirror

property Button.ShowFocusRect as Boolean
Sets or returns a value that determines whether or not the focus rectangle should be
shown.

Type Description

Boolean
A boolean expression that indicates whether the control
displays the focus rectangle around the button's caption or
image.

By default, the ShowFocusRect property is False. Use the UseFocusSkin and FocusSkin
properties to assign a new visual appearance to your button when it has the focus. The
following screen shot shows how the thin focused rectangle looks like:

method Button.Skin (State as StateEnum, File as String)
Specifies the skin file to display the specified state.

Type Description

State as StateEnum A StateEnum expression that indicates the state skin to be
changed.

File as String

A string expression that specifies the path to a skin file (
*.ebn), a string expression that indicates the BASE64
encoded string that holds a skin file (*.ebn). Use the
Exontrol's exImages tool to build BASE 64 encoded
strings on the skin file (*.ebn) you have created. If the File
parameter is an empty string the skin is erased, so your
button displays only the Image and the Caption of the
button without a visual appearance (skin).

The button provides multiple states like: normal, pushed, hot, disabled, custom, focused
and so on. Each state has an associated skin that's displayed when certain state occurs.
The UseTransparency property specifies whether the control supports transparency. The
transparent regions in the control's skin indicates the transparency of the button. Use the
Exontrol's exButton Builder to create new skins for your button. Use the ForeColorState
property to assign a different foreground color for certain state. Use the UseFocusSkin and
FocusSkin properties to change the button's visual appearance when the control has the
focus. Use the SkinV method to load EBNs from resources.

Please be aware that Style property changes the following properties, based on the style
chosen:

AllowHotState property
UseFocusSkin property
Skin
FocusSkin

The following sample displays only the exPressed skin when the user clicks the button:

With Button1
 .Caption = "&Help"
 .Style = exXPBlue
 .AllowHotState = False
 .UseFocusSkin = False
 .Skin exNormal, ""
End With

https://exontrol.com/eximages.jsp

We would recommend taking a look over the following articles:

How to build my own skin file?
How do I assign a skin file to my button?

method Button.SkinV (State as StateEnum, Skin as Variant)
Specifies the skin file to display the specified state.

Type Description

State as StateEnum A StateEnum expression that indicates the state skin to be
changed.

Skin as Variant

A byte[] or safe arrays of VT_I1 or VT_UI1 expression
that indicates the content of the EBN file or a string
expression that specifies the path to a skin file (*.ebn), a
string expression that indicates the BASE64 encoded
string that holds a skin file (*.ebn). Use the Exontrol's
exImages tool to build BASE 64 encoded strings on the
skin file (*.ebn) you have created. If the File parameter is
an empty string the skin is erased, so your button displays
only the Image and the Caption of the button without a
visual appearance (skin).

The SkinV is similar with Skin method, excepts that it can loads the EBN files from safe
arrays or in other words from resources. The button provides multiple states like: normal,
pushed, hot, disabled, custom, focused and so on. Each state has an associated skin that's
displayed when certain state occurs. The UseTransparency property specifies whether the
control supports transparency. The transparent regions in the control's skin indicates the
transparency of the button.

There are several options to provide EBN files in your project as follows:

(path) The path to the EBN file. This option is useful when your application installs files
on the client's machine so you can provide the path to EBN files.

With Button1
 .SkinV exNormal, "C:\Program Files\Exontrol\EBN\vistasel.ebn"
End With

(string) The BASE64 encoded string that holds the EBN file. This option is useful if you
provide EBN objects in the control's Template page or in code. The Exontrol's
exImages tool generates BASE64 encoded strings from EBN files.

With Button1
 Dim s As String
 s =
"gBFLBCJwBAEHhEJAEGg4BHQDg6AADACAxRDAMgBQKAAzQFAYahyGCGAAGEaBQgmFgAQhFcZQSKUOQTDKMIziYBYfgkMIgSbJUgDGAkRRdDSOYDmGQYDiCIoRShOMIjHLUXxtDaIZwhEAoJa0HAkABRVIRNLoARTAaeJKoSboJBGGwUQjQUB1HRNDy7JasY4GURYRDKY4RDSMFiQTZNVypAaIYqqa4JPrWNYqXhAdLgAKcSTtF6ZZjkCb4apqTpNVDeWCRPkDYYDBLJNZ0LT1FYZPLDZzlCrJCiCcwAY5AdYZBiQAS5SzLIqsWx7Cq4AJtWhaVwxXIEI5CADPchveTqNrvCaZW7FdAwTq+dw1XqVczuXLsPADI6gcZNeq6Xo7GEbJZEaa4bF4bh/guUZSuUEISgGJJGHQOocgyIwZAKKhaAAIQTH2MYhjQJBRAmZ5uiQIYIjmU5dlECQBkONJ8DsTIznSYQok+Ux4hmAhgjgKgMgOYJoEYDYEmECBSA6AZPmOPJNgAIAjjiTA/E4YpIn0PJOBOdJ1DmYhoiIJ4KSyLgugqIwIjYMYKmIQ54mcLJPCOEJCSuIoSCMOBPkORJbD8DpzFYRIRiQWQeEqEhkkkIhOhKZJ5CYQg/g8Q4IncNwJmgPJ2DoJBDFoXYXk6eR6GGGAmCmFhkhmZg5iSVlLHOJJ5DaCRZGiaYRA0eZSHYO5nFmYh3h4Z5Jm4foeigAxeGwOomnmRgOD2DojnCcA2iiKgyguIxpAoPo"

https://exontrol.com/eximages.jsp
https://exontrol.com/eximages.jsp

 s = s +
"SiOKRKEaFYkmiWYwmuIRliOLhBDcKZ6gSl4qDqCokimahqiaJYqk2SYwmyJwgmOYJsD8DwjHqNItisWpejqLhrkqYo+i6a56naNw/g+E42jCApPgOOJ8gkLI5ALGpsmsRpNjSbQLFKUo0CwQ4+kcP2TEIIw5C2e4EnOOAuDu345m4a4mmWOpOEsEJxjaT4TkYJg5i8O5UnWPQvHuWp4j6b4rnaeY/k4Y54noPIvAOSJ9hacBziMCZCnCDA3AqQ4wysEpEHCHAInPqgjk8Bw6jGPB2giR4xkwfwikgchMgMJoiA+Y5snSRlLnSdw7DKbJDC+TBzEyTw2xqDJXDmTZzByJJ186axwm+UI0EOYxDlGNBdB8SpSHSTQjE4O5yhOXpbD6dAbHaXI3jUbRnFiVp1H0dxaleNZNGifg/DUKZCAaAgsy8eZGg+A5EnsPZ1guSxtjcNwtlcdJdncPZneedo7GSO4NokxYAcAUHMCwMQYjGD8OoTgRhBjEHiJwL4HRihyA4G8EYxxPCnA4GwLIHgjgZEGA4JAJhcj6DkJUaArwigJDoHAW4TQDj0AOPEcwbBhiIAQQE"

 .SkinV exNormal, s
End With

In order to generate the BASE64 encoded string from your EBN file do the
following:

Run the eXImages tool

Run the Windows Explorer and select or locate the EBN file. Press the
CTRL + C or drop the EBN file in the middle panel (Drag here files such
of .bmp, .gif, .ebn, ...)

The clipboard contains the generated BASE64 string, or you can copy it
from the right panel of the eXImages tool. Generally, the string is long, so
you can use the s definition to insert it to your code.

(array) A byte[] or safe arrays of VT_I1 or VT_UI1 expression that indicates the
content of the EBN file. This option is useful if you want to provide the EBN files in the
project resources. The idea is that you have to provide a safe array of bytes to the
Skin parameter of the SkinV method. For instance, the VB6 provides the LoadResData
function, the VB/NET or C# provides an internal class Resources where all items in the
resources can be accessed through public properties.

VB6

With Button1
 .SkinV exNormal, LoadResData(101, "CUSTOM")
End With

In order to insert the EBN file to the project resources do the following:

Click the VB Resource Editor button in the toolbox.

Once the VB Resource Editor tool is opened, click the Add Custom
Resource ... button in the toolbox

Locate, Select the EBN file in the opened file/folder dialog, and press
Open button

The "CUSTOM"\101 item should be inserted in the resource file.

Click the Save button, so the RES file is being associated with your
project.

VB/NET

With Exbutton1
 .SkinV(exNormal, WindowsApplication1.My.Resources.vistasel)
End With

In order to insert the EBN file to the project resources do the following:

Select the Project\Properties... from the VS menu

Click the Resources page

Click the Add Resource and then Add Existing File...

Locate, Select the EBN file in the opened file/folder dialog, and press
Open button

The vistasel item is being generated and so it can be accessed in code
using: WindowsApplication1.My.Resources.vistasel

C#

exbutton1.SkinV(exNormal,
WindowsApplication1.Properties.Resources.vistasel);

In order to insert the EBN file to the project resources do the following:

Select the Project\Properties... from the VS menu

Click the Resources page

Click the Add Resource and then Add Existing File...

Locate, Select the EBN file in the opened file/folder dialog, and press
Open button

The vistasel item is being generated and so it can be accessed in code
using: WindowsApplication1.Properties.Resources.vistasel

property Button.State as StateEnum
Specifies the control's state.

Type Description
StateEnum A StateEnum expression that indicates the button's state.

Use the State property to specify the button's state. Use the Mode property to change the
button's way to handle the State property. For instance, if the Mode property is exCustom
you can control what state being displayed when user clicks the button. The control fires
Click event when user clicks a button. The control fires the StateChange event when the
State property is changed. Use the Enabled property to disable the button. Use the Caption
property to assign a caption to your button. Use the Image property to assign an image to
your button.

property Button.Style as StyleEnum
Sets or returns a value that determines how the button will be drawn.

Type Description

StyleEnum A StyleEnum expression that indicates the button's
predefined state.

By default, the Style property is exDefault. Use the Style property to change the button's
visual appearance to a predefined value. Use the Skin, FocusSkin methods to change the
button's visual appearance for a certain state. Use the UseTransparency property to
specify round corners for the button, as defined by EBN object being displayed. Use the
BackColor property to specify the control's background color.

Please be aware that Style property changes the following properties, based on the style
chosen:

AllowHotState property
UseFocusSkin property
Skin
FocusSkin

We would recommend checking the following articles:

How to build my own skin file?
How do I assign a skin file to my button?

Also, you can view the following items:

 Create a complex EBN file in 1 minute.
 Using the Exontrol's ExPropertiesList to browse EBN objects.

https://exontrol.com/images/ebn/createbn.htm
https://exontrol.com/images/ebn/expropertieslist-EBN-browse.htm
https://exontrol.com/expropertieslist.jsp

property Button.Template as String
Specifies the control's template.

Type Description

String A String expression that specifies the initialization code (x-
script language).

The control's template uses the X-Script language to initialize the control's content. Use the
Template property page of the control to update the control's Template property. Use the
Template property to execute code by passing instructions as a string (template string).
Use the ExecuteTemplate property to execute a template script and gets the result.

Most of our UI components provide a Template page that's accessible in design mode. No
matter what programming language you are using, you can have a quick view of the
component's features using the WYSWYG Template editor.

Place the control to your form or dialog.
Locate the Properties item, in the control's context menu, in design mode. If your
environment doesn't provide a Properties item in the control's context menu, please try
to locate in the Properties browser.
Click it, and locate the Template page.
Click the Help button. In the left side, you will see the component, in the right side, you
will see a x-script code that calls methods and properties of the control.

The control's Template page helps user to initialize the control's look and feel in design
mode, using the x-script language that's easy and powerful. The Template page displays
the control on the left side of the page. On the right side of the Template page, a simple
editor is displayed where user writes the initialization code. The control's look and feel is
automatically updated as soon as the user types new instructions. The Template script is
saved to the container persistence (when Apply button is pressed), and it is executed
when the control is initialized at runtime. Any component that provides a WYSWYG
Template page, provides a Template property. The Template property executes code from a
string (template string).

The Template script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline) characters.

An instruction can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name

of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The Template supports the following general functions:

RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier

The following sample initializes the control's image and caption at design mode, using the
Template page:

' Specifies the control's caption
Caption = "Exontrol's exButton component is our answer to your GUI needs"
WordWrap = True

' https://www.exontrol.com/sg.jsp?content=support/faq#eximages
Image =
"gBHJJGHA5MIwAEIe4AAAFhwbiAliQwig7ixFjBQjRbjhljxwkB7kSFkiQkyblCllSwli7lzFmDQmTbmjlmzwnD7nQBnk9n0/oFBoVDolFo1HpFJpVLplNp1PqFRqVTqlVq1XrFZrVbrldr1YhgAEL5AgBhj/AAssMJthABFof4JDhIWCgYKDBATFT8M6hUIFAQAEQCCDwYF/QoWDZCRBgOKgIYHCQXMisKBAEQAAgOBZaSgQhjERANKQiZhIWamYyIBQ6FzcNKxQLJT4ADA4RjwObAAidBYdHwABQgUxMQYZEI0cD4OgnYKaKyzIRFNQx2YCKoFHScYD0ADXQwUAgwLoLQDqaCWBJoNQ9NBxFJTVQORgiarqSABbamGwtDAwBUWhQmqYALnOFQvGYPA4m6AwKhkZxKj2PBWC0SZCgmVY6CwIJgieBAniubRKHgaYgiwQwGiCfxGDWbBRmGZYIi2VwGnAexxGUSwUFiaR+hQPbBgOCoLCIHh4DAARCmQG4AlgNxuhwWgpFAEQUhuOxOk0NrhAaQoBmgPYdFSIZPjYGYbn+HhgEoAA7HMBIOjUM51AoPojHkEwVlET5slgWZtAEUBdjeSoeF6X5/rQRRSi+QB6GychsEAfZshKYABGQZorlAOgMBqEgAjYHB2jqSoigmYBLk+QZnBqGhggAEwImgbojgoIwSE+MxUHiS4REQCQWluD48B+JJoL+YQikuaI9AALgLmsJQfnSdAvDkCJEhIIIBgOegLEiPBqCyCAAjcCwgAAIJBhQBQkHGL4gDaNBokkZQMiwUAuioJQiCAQYsHMcwwEIeoigAYIogsGIwFKIYICIWguEoPgQhsawBASGgwCuJwLH8K4LigAIaDwbxMAOKxbisPwfASQATFASoagIEYwgcSoKGiAA/mEdIuiGPxCmObIlhMIJNHONxFH8EpPCGeB+noEpBBSSRjCsPZEiyKhgjAH5whSdLEjwDxjC8TxVEMFRzFWJJZBUSI0gQEQLBOM4VHkIg1D0CAJDQNg/p4AAdoC"

The button's visual appearance in this case will be:

property Button.TemplateDef as Variant
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplateDef property has been added to allow programming languages such as
dBASE Plus to set control's properties with multiple parameters. It is known that
programming languages such as dBASE Plus or XBasic from AlphaFive, does not
support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef method. The first call of the TemplateDef
should be a declaration such as "Dim a,b" which means the next 2 calls of the TemplateDef
defines the variables a and b. The next call should be Template or ExecuteTemplate
property which can use the variable a and b being defined previously.

So, calling the TemplateDef property should be as follows:

with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith

This sample allocates a variable var_Column, assigns the value to the variable (the second
call of the TemplateDef), and the Template call uses the var_Column variable (as an object
), to call its Def property with the parameter 4.

Let's say we need to define the background color for a specified column, so we need to call
the Def(exCellBackColor) property of the column, to define the color for all cells in the
column.

The following VB6 sample shows setting the Def property such as:

With Control
 .Columns.Add("Column 1").Def(exCellBackColor) = 255
 .Columns.Add "Column 2"
 .Items.AddItem 0
 .Items.AddItem 1

 .Items.AddItem 2
End With

In dBASE Plus, calling the Def(4) has no effect, instead using the TemplateDef helps you to
use properly the Def property as follows:

local Control,var_Column

Control = form.Activex1.nativeObject
// Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
with (Control)
 TemplateDef = [Dim var_Column]
 TemplateDef = var_Column
 Template = [var_Column.Def(4) = 255]
endwith
Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The equivalent sample for XBasic in A5, is as follows:

Dim Control as P
Dim var_Column as P

Control = topparent:CONTROL_ACTIVEX1.activex
' Control.Columns.Add("Column 1").Def(4) = 255
var_Column = Control.Columns.Add("Column 1")
Control.TemplateDef = "Dim var_Column"
Control.TemplateDef = var_Column
Control.Template = "var_Column.Def(4) = 255"

Control.Columns.Add("Column 2")
Control.Items.AddItem(0)
Control.Items.AddItem(1)
Control.Items.AddItem(2)

The samples just call the Column.Def(4) = Value, using the TemplateDef. The first call of
TemplateDef property is "Dim var_Column", which indicates that the next call of the
TemplateDef will defines the value of the variable var_Column, in other words, it defines the
object var_Column. The last call of the Template property uses the var_Column member to
use the x-script and so to set the Def property so a new color is being assigned to the
column.

The TemplateDef, Template and ExecuteTemplate support x-script language (Template
script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the
Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please

make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

method Button.TemplatePut (NewVal as Variant)
Defines inside variables for the next Template/ExecuteTemplate call.

Type Description

NewVal as Variant
A string expression that indicates the Dim declaration, or
any Object expression to be assigned to previously
declared variables.

The TemplatePut method / TemplateDef property has been added to allow programming
languages such as dBASE Plus to set control's properties with multiple parameters. It is
known that programming languages such as dBASE Plus or XBasic from AlphaFive, does
not support setting a property with multiple parameters. In other words, these programming
languages does not support something like Property(Parameters) = Value, so our controls
provide an alternative using the TemplateDef / TemplatePut method. The first call of the
TemplateDef should be a declaration such as "Dim a,b" which means the next 2 calls of the
TemplateDef defines the variables a and b. The next call should be Template or
ExecuteTemplate property which can use the variable a and b being defined previously.

The TemplateDef, TemplatePut, Template and ExecuteTemplate support x-script language (
Template script of the Exontrols), like explained bellow:

The Template or x-script is composed by lines of instructions. Instructions are separated by
"\n\r" (newline characters) or ";" character. The ; character may be available only for
newer versions of the components.

An x-script instruction/line can be one of the following:

Dim list of variables Declares the variables. Multiple variables are separated by
commas. (Sample: Dim h, h1, h2)
variable = property(list of arguments) Assigns the result of the property to a variable.
The "variable" is the name of a declared variable. The "property" is the property name
of the object in the context. The "list or arguments" may include variables or values
separated by commas. (Sample: h = InsertItem(0,"New Child"))
property(list of arguments) = value Changes the property. The value can be a
variable, a string, a number, a boolean value or a RGB value.
method(list of arguments) Invokes the method. The "list or arguments" may include
variables or values separated by commas.
{ Beginning the object's context. The properties or methods called between { and } are
related to the last object returned by the property prior to { declaration.
} Ending the object's context
object. property(list of arguments).property(list of arguments).... The .(dot)
character splits the object from its property. For instance, the

Columns.Add("Column1").HeaderBackColor = RGB(255,0,0), adds a new column and
changes the column's header back color.

The x-script may uses constant expressions as follow:

boolean expression with possible values as True or False
numeric expression may starts with 0x which indicates a hexa decimal representation,
else it should starts with digit, or +/- followed by a digit, and . is the decimal separator.
Sample: 13 indicates the integer 13, or 12.45 indicates the double expression 12,45
date expression is delimited by # character in the format #mm/dd/yyyy hh:mm:ss#.
Sample: #31/12/1971# indicates the December 31, 1971
string expression is delimited by " or ` characters. If using the ` character, please
make sure that it is different than ' which allows adding comments inline. Sample: "text"
indicates the string text.

Also , the template or x-script code may support general functions as follows:

Me property indicates the original object.
RGB(R,G,B) property retrieves an RGB value, where the R, G, B are byte values that
indicates the R G B values for the color being specified. For instance, the following
code changes the control's background color to red: BackColor = RGB(255,0,0)
LoadPicture(file) property loads a picture from a file or from BASE64 encoded
strings, and returns a Picture object required by the picture properties.
CreateObject(progID) property creates and retrieves a single uninitialized object of
the class associated with a specified program identifier.

property Button.ToolTipDelay as Long
Specifies the time in ms that passes before the ToolTip appears.

Type Description

Long A long expression that specifies the time in ms that passes
before the ToolTip appears.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible
if the mouse pointer is stationary within a control.

property Button.ToolTipFont as IFontDisp
Retrieves or sets the tooltip's font.

Type Description
IFontDisp A Font object being used to display the tooltip.

Use the ToolTipFont property to assign a font for the control's tooltip. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. Use the ToolTipWidth property to specify the width of the tooltip
window. You can use the HTML element, in the tooltip's description to assign a
different font for portions of text. Use the ToolTipText property to assign a tooltip to your
button. Use the <a id;tooltip> element to assign a custom tooltip for a specified anchor
element.

property Button.ToolTipMargin as String
Defines the size of the control's tooltip margins.

Type Description

String

A string expression that defines the horizontal and vertical
margins (separated by comma) of the control's tooltip as
one of the following formats:

"value", where value is a positive number, that
specifies the horizontal and vertical margins, such as
"4" equivalent of "4,4"
"value,", where value is a positive number, that
specifies the horizontal margin, such as "4," equivalent
of "4,0"
",value", where value is a positive number, that
specifies the vertical margin, such as ",4" equivalent
of "0,4"
"horizontal,vertical", where horizontal and vertical are
positive numbers, that specifies the horizontal and
vertical margins, such as "4,4"

By default, the size of the tooltip margin is "4" (horizontal and vertical). For instance,
ToolTipMargin = "8" changes the horizontal and vertical margins are set to 8 pixels.
ToolTipMargin = "8,4" changes the horizontal margin to 8 pixels and the vertical margin to 4
pixels. The ToolTipWidth property specifies a value that indicates the width of the tooltip
window, in pixels. Use the ToolTipFont property to assign a font for the control's tooltip. The
ToolTipPopDelay property specifies the period in ms of time the ToolTip remains visible if
the mouse pointer is stationary within a control. The ToolTipDelay property specifies the
time in ms that passes before the ToolTip appears.

property Button.ToolTipPopDelay as Long
Specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control.

Type Description

Long
A long expression that specifies the period in ms of time
the ToolTip remains visible if the mouse pointer is
stationary within a control.

If the ToolTipDelay or ToolTipPopDelay property is 0, the control displays no tooltips. Use
the ToolTipDelay property specifies the time in ms that passes before the ToolTip appears.

property Button.ToolTipText as String
Specifies the control's tooltip text.

Type Description
String A string expression that defines the button's tooltip.

Use the ToolTipText and ToolTipTitle properties to define the button's tooltip. Use the
ToolTipDelay and ToolTipPopDelay properties to specify the time in ms that passes before
the ToolTip appears. Use the HTML tag to insert icons inside the button's tooltip.

The ToolTipText supports the following HTML tags:

 ... displays the text in bold
<i> ... </i> displays the text in italics
<u> ... </u> underlines the text
<s> ... </s> Strike-through text
<a id;options> ... displays an anchor element that can be clicked. An anchor is a
piece of text or some other object (for example an image) which marks the beginning
and/or the end of a hypertext link.The <a> element is used to mark that piece of text
(or inline image), and to give its hypertextual relationship to other documents. The
control fires the AnchorClick(AnchorID, Options) event when the user clicks the anchor
element. The FormatAnchor property customizes the visual effect for anchor elements.

The control supports expandable HTML captions feature which allows you to
expand(show)/collapse(hide) different information using <a ;exp=> or <a ;e64=>
anchor tags. The exp/e64 field of the anchor stores the HTML line/lines to show once
the user clicks/collapses/expands the caption.

exp, stores the plain text to be shown once the user clicks the anchor, such as "<a
;exp=show lines>"
e64, encodes in BASE64 the HTML text to be shown once the user clicks the
anchor, such as "<a
;e64=gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA>+
" that displays show lines- in gray when the user clicks the + anchor. The
"gA8ABmABnABjABvABshIAOQAEAAHAAGESikWio+ABzABohp3iELABpABuABljYAgRhAEaFsqAAvAEsjUCmUEg0IhUMhUPjQAAEBA
string encodes the "<fgcolor 808080>show lines<a>-</fgcolor>" The
Decode64Text/Encode64Text methods of the eXPrint can be used to
decode/encode e64 fields.

Any ex-HTML caption can be transformed to an expandable-caption, by inserting the
anchor ex-HTML tag. For instance, "<solidline>Header</solidline>

Line1<r><a ;exp=show lines>+
Line2
Line3" shows the Header in
underlined and bold on the first line and Line1, Line2, Line3 on the rest. The "show

about:blank

lines" is shown instead of Line1, Line2, Line3 once the user clicks the + sign.

 ... displays portions of text with a different font and/or
different size. For instance, the "bit" draws the bit text using
the Tahoma font, on size 12 pt. If the name of the font is missing, and instead size is
present, the current font is used with a different size. For instance, "bit" displays the bit text using the current font, but with a different size.
<fgcolor rrggbb> ... </fgcolor> or <fgcolor=rrggbb> ... </fgcolor> displays text with
a specified foreground color. The rr/gg/bb represents the red/green/blue values of the
color in hexa values.
<bgcolor rrggbb> ... </bgcolor> or <bgcolor=rrggbb> ... </bgcolor> displays text
with a specified background color. The rr/gg/bb represents the red/green/blue values of
the color in hexa values.
<solidline rrggbb> ... </solidline> or <solidline=rrggbb> ... </solidline> draws a solid-
line on the bottom side of the current text-line, of specified RGB color. The <solidline>
... </solidline> draws a black solid-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<dotline rrggbb> ... </dotline> or <dotline=rrggbb> ... </dotline> draws a dot-line on
the bottom side of the current text-line, of specified RGB color. The <dotline> ...
</dotline> draws a black dot-line on the bottom side of the current text-line. The
rr/gg/bb represents the red/green/blue values of the color in hexa values.
<upline> ... </upline> draws the line on the top side of the current text-line (requires
<solidline> or <dotline>).
<r> right aligns the text
<c> centers the text

 forces a line-break
number[:width] inserts an icon inside the text. The number indicates the
index of the icon being inserted. Use the Images method to assign a list of icons to
your chart. The last 7 bits in the high significant byte of the number expression
indicates the identifier of the skin being used to paint the object. Use the Add method
to add new skins to the control. If you need to remove the skin appearance from a part
of the control you need to reset the last 7 bits in the high significant byte of the color
being applied to the part. The width is optional and indicates the width of the icon being
inserted. Using the width option you can overwrite multiple icons getting a nice effect.
By default, if the width field is missing, the width is 18 pixels.
key[:width] inserts a custom size picture into the text being previously
loaded using the HTMLPicture property. The Key parameter indicates the key of the
picture being displayed. The Width parameter indicates a custom size, if you require to
stretch the picture, else the original size of the picture is used.
& glyph characters as & (&), < (<), > (>), &qout; (") and &#number;
(the character with specified code), For instance, the € displays the EUR
character. The & ampersand is only recognized as markup when it is followed by a

known letter or a #character and a digit. For instance if you want to display
bold in HTML caption you can use bold
<off offset> ... </off> defines the vertical offset to display the text/element. The offset
parameter defines the offset to display the element. This tag is inheritable, so the
offset is keep while the associated </off> tag is found. You can use the <off offset>
HTML tag in combination with the to define a smaller or a larger font
to be displayed. For instance: "Text with <off 6>subscript" displays the text
such as: Text with subscript The "Text with <off -6>superscript" displays the

text such as: Text with subscript
<gra rrggbb;mode;blend> ... </gra> defines a gradient text. The text color or
<fgcolor> defines the starting gradient color, while the rr/gg/bb represents the
red/green/blue values of the ending color, 808080 if missing as gray. The mode is a
value between 0 and 4, 1 if missing, and blend could be 0 or 1, 0 if missing. The
HTML tag can be used to define the height of the font. Any of the rrggbb, mode or
blend field may not be specified. The <gra> with no fields, shows a vertical gradient
color from the current text color to gray (808080). For instance the "<gra
FFFFFF;1;1>gradient-center</gra>" generates the following picture:

<out rrggbb;width> ... </out> shows the text with outlined characters, where rr/gg/bb
represents the red/green/blue values of the outline color, 808080 if missing as gray,
width indicates the size of the outline, 1 if missing. The text color or <fgcolor> defines
the color to show the inside text. The HTML tag can be used to define the
height of the font. For instance the "<out 000000>
<fgcolor=FFFFFF>outlined</fgcolor></out>" generates the following picture:

<sha rrggbb;width;offset> ... </sha> define a text with a shadow, where rr/gg/bb
represents the red/green/blue values of the shadow color, 808080 if missing as gray,
width indicates the size of shadow, 4 if missing, and offset indicates the offset from the
origin to display the text's shadow, 2 if missing. The text color or <fgcolor> defines the
color to show the inside text. The HTML tag can be used to define the height of
the font. For instance the "<sha>shadow</sha>" generates the
following picture:

or "<sha 404040;5;0><fgcolor=FFFFFF>outline anti-aliasing</fgcolor>
</sha>" gets:

In the VB environment, the extended wrapper control that implements properties like
Visible, Top, Left, Width, Height ... and so on includes also a property named TooltipText
that can provide confusions. In order to avoid confusions on this name, the VB users must
call at runtime a code like:

With Button1
 .Object.ToolTipText = "In VB, this is the right way to call the ToolTipText property at
runtime."
End With

If the Object property is missing, the code changes the TooltipText property of the VB
extended class, instead calling object's property.

property Button.ToolTipTitle as String
Specifies the title of the control's tooltip.

Type Description
String A String expression that defines the control's tooltip title.

Use the ToolTipText and ToolTipTitle properties to define the button's tooltip. Use the
ToolTipDelay and ToolTipPopDelay properties to specify the time in ms that passes before
the ToolTip appears.

property Button.ToolTipWidth as Long
Specifies a value that indicates the width of the tooltip window, in pixels.

Type Description

Long A long expression that indicates the width of the tooltip
window, in pixels.

Use the ToolTipWidth property to change the tooltip window width. The height of the tooltip
window is automatically computed based on tooltip's description. The ToolTipPopDelay
property specifies the period in ms of time the ToolTip remains visible if the mouse pointer is
stationary within a control. The ToolTipDelay property specifies the time in ms that passes
before the ToolTip appears. Use the ToolTipFont property to assign a font for the control's
tooltip.

property Button.UseFocusSkin as Boolean
Specifies whether the focus skins are used when control has the focus.

Type Description

Boolean
A boolean expression that indicates whether the button
provides a different visual appearance when the button
has the focus.

Use the UseFocusSkin property to change the visual appearance for your button when it
has the focus. Use the FocusSkin method to assign a skin for the button when it has the
focus. Use the Style property to assign a predefined appearance to your button. Use the
ShowFocusRect property to draw a thin rectangle around the button's caption when it has
the focus.

Please be aware that Style property changes the following properties, based on the style
chosen:

AllowHotState property
UseFocusSkin property
Skin
FocusSkin

If you require certain value for the UseFocusSkin property you have to change the
UseFocusSkin property after changing the Style property.

For instance, the exMAC style provides a skin when the button has the focus.

property Button.UserData as Variant
Gets or sets the user-definable data for the current object.

Type Description
Variant A Variant value that specifies the control's user data.

Use the UserData property to associate an extra data to your button. The UserData is not
used in any way by the control. Use the Caption property to assign a caption to the button.
Use the Image property to assign an icon, picture to your button.

property Button.UseTransparency as Boolean
Specifies whether the control supports transparency.

Type Description

Boolean A boolean expression that indicates whether the control
supports transparency.

By default, the UseTransparency property is True. The UseTransparency property specifies
whether the control supports transparency. The transparent regions in the control's skin
indicates the transparency of the button. If the button's skin contains no transparent
regions, the UseTransparency property has no effect. Use the Skin method to assign a skin
to the button's face. Use the BackColor property to change the control's background color.

The following screen shot displays the button, when the UseTransparency property is True:

The following screen shot displays the button, when the UseTransparency property is False
(check the white corners of the button):

The following template assigns the skin to the normal state, and the skin to the
pushed state.

BeginUpdate()
Style = -1

Skin(0,
"gBFLBCJwBAEHhEJAEGg4BOoJg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIQLGETRKJMEhNDcHUSvfBMSQvBKGAAGIZRFimK4tQiNIwTBAcZRpCyRJAkAYoRgmGo6TpGUZAPBJZDqOAXDCNU4IaR4EoDEITNLRWK0EhRBKOYDjeKQABiFhoU8eCRrEgOZQAWbaNjWXZFWTVNqoLhAAaYDIoCAIFJcFr3XZ1ez1Pyzb7wK7MDr0OQpGqEAAEj7kCAAEoGAIGHiRR4UMbHSyzGA7ZxCcqMXLBGC6HglX5JQDULZJIQSaDEEBaCjkewmHqYQgBSjbcrxfJtXzuAxab7nFy3FagASzWzSdR0bidHQQSiUEoEBh3ISQYgAlabZugaMYICCZ5WDmRxOHsbwQACZxenMeR8niIxem8dgQkmBg6FcfJvBeLAAmQco/D+K5hkwcoMBKAABi4AAalmIgQFIAgcmAAB7F0H5XhUdAekQIAggwXQIEQdgVAACBGlge4GiGQAgHseZbmYeYLAQHQllWD6WAWUcVl+MAAi0IQMGcbIMGMIAoCgYwAAkSJdlCAoXhgGAAH+YYID2VoCz6RIUHWCBHFiDIFhsYgRmeE5giCBgeHuRw3AwABnR0AZ2AgQoQgYAIKlIV5kjUIwMGgQIUBaAQBk2QAhB6QhQGuDgjlmNZACNW5WD8XhjjiTg/GMCRFlCDISigCBiBaBYeieFhUHsW5ZF2DRBB8GIpnoaZNmKFoRBSChWCYbICCUUgyhkHpjnocIMhuSBIl6IYGCoKYuHOHJXhmUg/gAI4yFIfIfCeaZ6EqBooFGTYPhuWx3AmCxBAMEJFkAYQaHKdBrC0SZAkSHAekEAgwgQBAJEIEAICUKZiBIGInAeORWGzewKgKIoNkiSxyie3wImKLIrCqeJijKBgrEgKYPhUXhUA4N4iiuNwZicagNGIcJOCcBAiFCyhIkIMAYCUCJAECHIzi0CBilIIQtEocIEjWLRrGaWIPm2Sx6D8cAJEmYh4jibgomIfISiSSBhgqJwgiQDo4HAIgggcJhjCKRY0l4LRNGmFI1CkQ4SFCHAIHMIBghwJQwCsSpKgYCJMBoCpCjCLAzA+NZtHsdwQkSY4MFMFgAAmRZkhyAA0nuGg/iyY51HqS4GC6O46jocRChGDBahUWAV3AM4LFEaIcC10ZwuoSZChcNglCyfAfAcIwggsSB7lALQ4GMQpCnCPQfwjxRhMH0E8Aoph0iaDsKELARwEDpAwNsL42B6jVMICsXgslliOFsMIAAGRihpE4GcCIhR0hqHOJcXYSQ1AQHaLYMIOQzBuAuOwCIugHh2EgOcXYYWgC9DsJse4bREDHAiNMQATg7h9G+A0UwYw+BMDiMYNQzAqhtC4MQJwLR8BGAoKsQwVArDlFGJkLQYwEhXFqIwLw3xyhtEwFIeg3QuA9F0HUeADh2jxGCF0Q4ZRQLtGYN8X4RwejPG6N4NInR7CZGGOlQ4OBHDfD0KwCg9RZgvD2DoBgQgIBCCMOQTI5xZDQGMCkIwsAlBSCAOQKQjAyj+BaFYJY2gIiCDiNUTwVh0AaGyOwDAghkApE8Loa4yhnjfB2LUPoSBwg3FMOcbg+wuALHgBQUsrhMDFHgP0Lzxg4jPA4M0Eoch3BoAeMENYGBhBQC8I0cA9wHn9FaBsYAxgCA6CCIwWQYBACEEEIEdgSggiwGuBMMA0A5hnFiEoBowR0CsGCNsYQmg+gxDaPYIQWAlCNHCFQFgQAIC1FMBcIoih4DRH0BoP4hwuDHFKJcFgmAjAwEYBYUYeAcjHBwBQHI4AwDeAKCIKAZwAiHB0AQAgIBShDGgFAHItwECeAECIPQAREiyAsA0YoSBUgVHCAwLQkgkhWAmEkLAwQMAOAICsAAAhKj6ASMIdAJQOBSCaI0NgkgbgXAMMgGYhgYCEEcGsBgbwgChG8NoI4PA9iPFiPwHovRQD3BAIMLgFBLgyBUF4JAmQMgjFEJscgbh5BFCYMwKgcQSgiH2PESYbxkioFONgMYKBHgqBCD4QIzAciJR0DUQorBUCVCGJ4HQjh4C0BWEcPAQgJiDF4BQRAwRWAICiIADADw4BAByMsQ4mwXDnEIFATwUh5BgA8FkQg3gOicEmIsOQWgyg/AOAkGYXgGAyDUOEdorBOhyFABgYYHAmibAmGgLQjg8B+B6MMDArQPDvCoHcQYGRmAICGNwBwDgxD1BoIobIEB5hgqiJoYNhQngZD2BQdIRAPiKGmOEJ4TAzjYHcKYKYgQxCsDSKkYwlAYDVFQCwUgoQKAqDYMcDQGgQgFHQlAMQtA/iFBSMYP4oxoWPFoG0GgiwsgQBWE0XqNg6hMG2MQbVZxyBsHuIQGY5hLgjFUGEJgkxgiMCeOgfoxQMClE4LsLwQAlCaEeDQWwjB0B4B2NwdA/xHCjH6LO7ghARgqCQM4AgIRnCNCCAUQwbR1KeFIJQRQqhsBZAmBQMwDB7CEAmA0bI2BtC7ASOkQQqgnhICcLIH4qhnC7AuHsFATAVjWFAImfYPxzhYH+IAegTAjAODgGIDw5wcBzFSHQOQvxogaFGGEFgHRYiqGmM4YgWBTjDBgOwMY6BJBVD0BMVQhQrCPGgKMDoah3gdC4CUegwhlDGBgO8CYgh6B/GOCsIjoAUCUA8OAcgQglunBqIAYAaxEDhjYJkHQPQwCqFKLEXgNhpAMGwJAcw7ArCrFoGgVIvAnBJDuAUJg0xoCECEIkBgjhWCDDcFcRgShFT/EkGwBgYRnOgAaM4PQVRoMyH0O4Ho7QcDnFeHcMQ7QOgoBCGsVgFQQDCCsMISI2waADAMF0OY5hbgNASL8BIyxshkCqEkRgvgkBiH0CUCgAgriDAwEoXQjwdD+AWFERgpAijoHeIcSwgAtCPHgNcOgDg+jTAgJMSAPRGjqHuB8IYXQOC7EMEwLQ2ABivCoAIaYzRkgnC8PAaQWBQhKDaLscwsRkD9HqL4WouBVBQAKPEXAJzugGFkLwCwmAvBFF+GUVgbweg7EqHMFYjgBiuFqN4RQ3QoBTDqO4Zo202BMC8JsPg6gLCyBYN8ZA5wvglCaGYZoYRSBdBSJICw4Q1Fkh7BbBNAihJBWAkh9B9BNgxhTADANgAg2AXh7h7B/hsh8ANg5g3AzAbhdAahsAjAzBuA+hOABgsBnAdAshngQrhh3hPA5AjA+hYBagvAvg0AUhCB8hXgdAFBoBtAQgqgVBtBihEghgtA1A8hXAvgkhzA2gXhGB2gGhRhjgbgpgPAwBWggOLhDAGhqBagdBEBMgcgCg2BVBiBHBMAmB6AhAbgRhdgggWAyARhTAlhJBNBDBYBCgjAGgNBIBAhchPgmArgVBEhJAjh/Bhhjg8ASAKBxhuA/muBLAhBdh5BxAugbgEgFHrA6APgIBNgohdA3hbB1BBAUg2ASBTLhARBOhqhzA0huBkBehpBRhuAnAsh+BphchiByhSBdA9A6AMBzB1goxJAHBkhXhqA9gNhkBEgEBuARAyAOByAth2gGAdBLgpBngshtgdgwBYBNB7BXNWBDhBgsh/BwBzgTgZD5gXhhg7gXA1BgBcBzgbA4mPA1A1hqgMhOgngxA6hAgHBFAQgPBqBAgggIApASgQgUAUgCBoBKAmgIhGhgAnAZhrADBpgKBxBKhMgkhogCAChWhgA5gLhNgxBgABhfhNh4B1gfhABwAegihjgOAiB/gtAwgEgPBCASBzgIBIh6gMAkAEBHgoARAjg8hHAlgYh2gEgjhaMXhxhTgih5A2gzgFAqhLAUgohog8g3B2hThYB0gSBgAvhjhdhNAPh+BxBcB2AOhnhtB1hYBKBKh/A0AMBEgkgxgvAMhShsAIhIh7AfAXh8AOgzhMhZhsBcg3gyhAgZhAgtBfhJgMAMAKhQhmhAgyhzA9hxh6hzhcAWgxhPByh3AlvPAVhLAahRAahoApBogfARgcBSg+gjgJhJBiAlAjhQgch5hDBZg2AMhmhYAxzYgkB0BshcAMAKBXAWgLhBBIglAPBxhvhGhzA0BbhjB7AlgfBehDh/hfgjALBBgmBFgoh3gbhjheAghRA5hAAQgFAohnh+gxhiAFhAgPhqAzg/vFBAhDBoAKBUgeB4BihGB+AngPgABnhkAWBVhKBcgVgeBXAAhGMJhrBDh1ByBpgVBBBdhAhvAGA1ANBngAheAFAkhZBEAQhGBEATgfAKBQgtA9BYAIgCBWBjyGAJAfgQh3AmUNhR0cUeBvBXhEB0BnBXg6gCgChzAQAQCAg==")

Skin(1,
"gBFLBCJwBAEHhEJAEGg4BbQKg6AADACAxRDAMgBQKAAzQFAYZhxBaERiGIZ4JhUAIIQLGETRKJMEhPDcHUSvfBMSQvBKGAAGIZRFimK4tQiNIwTBAcZRpCyRJAkAYoRgmGo6TpGUZATBJZDIN47TaFYwjNLCGgaBLAZBEbSENhtBIUIRjWA4fhkAAYRY5ARUBYkTTNAazQAtGy7Iq2apuWxbZ5nGwxVjGWq7FpMO5zLKtNZvYBcOBXBgmA4LEzDMRwPCsETVLTWHqaaikELJdhCCAtAgAAogIxvHRaQLo3ysdJKAxKQKOIIBARQciEOY1TjSTDNUwuca1YbuNrqaiiailSocQwNMQQIJqYLGvbsDgwALMIQAHrYBx2ByPIZSk6GJgHobJYEAEBKm6DBvigTZHhMb42l0SQZlidJhk0ShKBCGJIEGA4eiidgxmafZPGOEACBPBR/hGnAACUHJyDEYAhCAdw+AgfwZlGLZaGcRImHWKgCBkV41mUegSFgYYMC0SJDBgcwQgiQRIBAGpECcJYoB6YhSBIJQjCKOIUhSCRJkaIZuAICpYhYNQAAqV5siUfZKFQdIcg+JAIA2RAelmdxpikZQHjgXY0hKHoSlSXoHAyZ5SC8AAGjaIBzGkCJGiCBBpgkRoAhwaAKFmAhig0GYSlWGQvFyIwZkoM4cGMGgRC8X4yjUHQpFychRh0IQcEmWZNHYGhQgQGAWggQgQi2EwhhaYJWC8TZijSBAvEaMJEgSBBlHAIIMHYZZwACHIDgoWA4hyJQpgGLg0HSS5SBAKQzgiQJkl6KROHedJeB6QoTHgc4rGqeo6i0GJCBMWZfDOAwQCCPRnEmRh0gwZxHDaBRSAoQiXgwbxkigXJGCcDKYBQalLAGEYAl2GR2AOJosBIchECsYBinSFAKEwax8k45QTFqZA1gqURIneOhPHKFBSD+bpjnyHI7mME58qWTpxi6LYtkOEBAkYc5KlWAIUGaJIWg2JwEBqSwlgMNYKFwMBSCkXQSBKQQemSEgyEkJQgmwSAACNnBSEkJwIEAQpcAgSxYnyRoNWudBSDuS5RGid4ag+cw4GsP5ZAyUB7D+VxTn4ZmqBuQpvj2b4ajQUgGAwZorAGAJZlkEhUGmQ4QmaQRiliQw4jWOlLHAMQlAiQBAgwIwxj0cIMHicYHEKQZGjXcQcCUAYMhQKQvGOex4CGKBBgKNB7kiBwwCIYYAloDB7G+GYPHyK0K4mBHB5GgMYP4xRDh9C+FsNAkxMBTFmCAPYrhLAAASEMDA1gnBJDWGUS4UBDg0AQEIIQYA9DeBsPEdY7xyAcGwDoDAvBEiQAEB0IwIRZhjFcM0E4jRaDdD6C8XYSxmhBBQDEdwxBwHUHMLkVIexgDLBOL0DQbwfBFHeBYKQ6QbACFKD8GgDwZDbEoN0B4bQlI2G4OYWorkugrFCNEcQewOiDEcGMPAzAOBGD4HAOwwh7BuGoNUFI9RAAFBeHEe4RhOjBC2J0TQxATB5GCMQE4/xDjFDYNYAYuhBkSCEAwNYGBiCWHsKQGIhh4ClAyMsXASgFBQDkCUAg4AMBYHACEdkIRJgFE8NoKgQRjPIA+MQSQIQMCrdmO8SovAYi1FUKcD4Sw7A7BaN4CwKgCjcB6NYNQ8AFhLGwCVQ4hACATEGGkFgCAMAEBgFgNwawChpEeDAAovA1gLCiIwVIBR0iTAgIIaoqxEjABAOcBwgRxgNDSCYFIpQhiyAsI4ZAYwsAwPWEEdAvB8AjAGOMJAigyhLBudkBIVBtjtEKGkPANRAgEE4P0QoaxBgSEWLwfQDg6j6BaFwLgEQfiLIgLUeIewIDJoOBYUYOQUC/BwB8DwIBCA9BsGEZwKQWAXBIGgZwyApBBGCI4BYpBLAolOLkOYix2BeAkD4Ow6wMgfDkJYPoigqh5FSGMbgOxoDzB8HAQIKA/iEFMIgR4EAVgEBmO0GoJBMCCCQDsbQmBnAMDELUUQiRij/AGGQKQVAeBhDSAcAoIxZAQEajAJAgRWDxGQhgPAwxuDQE0BAPo7wPjGB2AkD4IhriUCmG4GgzRqC8EwBkVArRDBoFgHsQ9GAdjPFwK0JwrQSj/E0Jkg4FQQCtA2MUboXAljgBiAMJwawuALCS30FgEBKT0AWJBx4IAYjFBSJsII5g+BRD2FEOosghApFoNgL4Ox1CbDcN4KIIwjh0ByNkQQ8QqjjE8BsXgZxtBmEqPsR4NQCCZEoMQOIGAVhHawBpnoZggghCUJUDQ4ApUXAQAAAYkwmAKCsAgKQoAwiNFcAYWwuAODpH6D8UIEwjCFGaEYG4QxUCDHMFMKgShFBNGiBgVA2RBg9B8MMXoEbLA6GiOkBQwQZhvCkD8aQURWhJOSE4UogwtCXA4JYXIPw0ipFAAQEwmRmiAEAKUHwqR2hxFMBMcwhBmDqESCUdAZQHB8AEFINY0B8BPAyFQWYdREDOAaJ4T42hUJtGEDgMAT213PHMKAagOBeh+FELRzgcRnhYGCAgRgpR1gYHeCDGCcRAimEEFYQwmBNgwGMGwYYXRUC1AqAYQg1w8A/DXGwI4tgqjtHmEIQw7wiggCmIMG4yxtBzGqFkaYYhnCBFCC8NwUhkC/CiEsMoaQgA5nQHkZo0h9DeEKA4ZAIQagVFwK8WomhvBmsYKoJQlw1CgCuEodoNBxDzA0KEWwyhEBbDIL0BQ5Rpg8EqIcegcxRAhD2DoM4XRgiSACI4cQCxtgkBCAUFYwqlC+HKA0NYmwgCACADEHYIAxDpE0GbWQnBQBarmJwcg3RVhTC4O4do3xJgWGEPEYwGAlhuAkPMOolxIDNA0I4eoRAbiTB0DwXADAKAtCwOUA4EQUg4H+A4MQ1grCKCiLwBQVAKhuFAGAYg0AtAQACHUEApAAjBBwC8Ao4B1hXDuKrOowhJhXAWAgZAzhujZL2Bc8gJQHDxBwKkRgsg2CHAwIkAIsAiiFBaRIbwNxRj8B6IsaI/gLCp6ClUagzAVj6AEGbGgCQ0t5GyIQVgdg5BxHMA0XYeAhChC0NwQoeA1jVFqJsOQhG4I1BiKAOQp7ShYBqOQUgRQJgUFkAUHQhhLB3EcPELQMxDi6EWB4cIjApBjgygLBPhmhNBHCDhCgDgxgxgbhNAhhMAIBcgqhdBmhzB9h0hOAZhOgfBMAqhrgdhrhDAVgEAzBqBugghmBGg4BXAqgsAYhGBkBWghAcgeACAQAhh8A5hnBNgDBlgNAcAzvSgMAXgrhmh8gFAhApBKhLhwAIAIOlAYgkgQAwB2hRArAGgCOzBNhqBTBGBshChVhZg7BgAihuhMhLBbA0gih7ggBihrBlBsAjBEhwAxgVASBRhJBGgTBdA2Bjh2gpBgghAdANESguBlgEgeQgA8g+AdhhhsBWgPB8AVAdgDhYhOhagKAPBNABgDgyB3gNA+A3BJAwA8hNgrhcAVgcg2h2jpBnA1hKAHgzBnhGhPhjhYB7AHgOAug+ALhGhHgAgAglBBAChUhogmgEBoBpgPBzhtA+hnh0hoAch6B4Achjh+BYAthwAkBjBsBhB6hwgEhgh3AJGHAXgFghBqgFANgYAhhaB4hWhphdAeAggvhCgXATBXg6gfBThxgAhmhlA6ghhQA2BvBTgPAfhOBDBRgkhRBzgCgJATgSm7g0gYA5BqAyhegEB2BzAiA4AKBbA3h2BegJBvhrgfAah+AOASg4M7AnAFB8hTBdBMhQB8pDgOhZh9A1A7B1AXApgDhwB+LfAWg5hShDhWhrBjg3APgMBugsBJgzSegyg6BfBpgoB3Bah0h6g5BTAIA5hlhgh3hLRGhSgPh6B0A5krBjAXgmgygXhpggBSgDg2gmA3hAg5srAsAXROgTg2hegggKh2hUhuAchrAVBLhsAaA5AxBlg6gbAfAdBsBbAMghhyg8g5ByAchQglgMA8hZgMAch5BtBBA/ghAoA7hmBQhWh0heggAlBSh3C9A9A2BphvCkBPgcBSg+B2B7hAAxh2BpASgZBWhqBzAxBkgJggAKLUgtB/AVgDAVBsB3hFhyBvg0hTAjAWA2BqgaB5g6AhBwh3AJhGAsAoAjhCAJBFAcAHgyh/B0A2pfm/Bwg2BpAaAGA4Adg3B6IogiAagGFPAxgoFBB+AagABCAaBgBKB/AXhBAlBGB3BXhCgWB/gEglAsh0A9AwgiAYB5hWhIgAAmgRBwAjgTB9FkhfhngnAahCg9BmAnhdBtAyhBABABhZBmgGA2BwhXANgBB1BrB3hhgmADgUhJBFB0gTBFgyBEBhBlARBYACBdApAgBaB0B4AqAhB0AJALhXhQALBYAvBpAwgcAOolgIBFgXAXBCB/BmBGBuBTBXB3QoghAsAWgcAAgBhwgGglBqT6ACBTBRhZAEgiAOBiBYAiAchVBGAIBEBiA3BnAoAtBSAnBOBjgUAeB0hvAoBBGShnBvBihBgSB6A3hUAohlhMAXBIA8AKhWMwBCAUBjUkA0hnB+BTA0h+AkgUh7BqgwB7BxhzgfA2BjTiAHAmApykA1gogCAWgYglAYIaBlhmApBYh3gjB6AmhQBZHsgMhlA4ALhRhwAwAWAKUUg/AEgnBNArh1gcBThAAIQ1h7ArhVgaBrhUBOBnhQKMAAAhB2A0h3AcA2h6AhgjBQgIAIhQAAAHgfVnBdA/glh7AFgmgVB0hjhEAJBAhOA5gQhGBtAjhGBlhWAwALBTgbBOgigCBZgUhqAJBEhqAJhCByAKBSA9ByB2BsMugzgNAYSChIyGKrAHgwg1AOB1gPAvgVgUBLgwhvBmAFhtAkhnhaMUBCBAggA5WXhwAKBQg1gQgSA1P3APA7goB/gMhpAUB2hJAVgPWxBOBQhGA8AnA6AFgoBWgRhmAgAXh5AYgKBxhkAQAQCAg==")

IncClientState(1,0) = 0
IncClientState(1,1) = 0

UseTransparency = True
EndUpdate()

property Button.VAlignment as VAlignmentEnum
Specifies the caption's vertical alignment.

Type Description

VAlignmentEnum A VAlignmentEnum expression that indicates the vertical
alignment of the button's caption.

Use the Caption property to assign a caption to the button. By default, the VAlignment
property is exMiddle. Use the VAlignment property to change the vertical alignment for the
caption. Use the ImageVAlignment property to change the vertical alignment for the image.
Use the VFit, HFit, IncClientSide properties to adjust the control's client area and to
organize the image and the caption positions in the control's client area

property Button.Version as String
Retrieves the control's version.

Type Description
String A string expression that indicates the control's version.

The version property specifies the control's version.

property Button.VFit as Long
Specifies a value that indicates the vertical offset to fit image with the caption.

Type Description

Long A long expression that indicates the vertical offset to fit
image with the caption.

By default, the HFit property is 0(zero). Use the VFit, HFit, IncClientSide properties to
adjust the control's client area and to organize the image and the caption positions in the
control's client area.

property Button.WordWrap as Boolean
Indicates whether a multiline text automatically wraps words to the beginning of the next line
when necessary.

Type Description

Boolean
A boolean expression that indicates whether a multiline
text automatically wraps words to the beginning of the
next line when necessary.

Use the Caption property to assign a caption to your button.

ButtonBuilder object
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {91C7CB9E-7B3C-406E-9399-D8F344CABD7B}. The object's program identifier is:
"Exontrol.ButtonBuilder". The /COM object module is: "ExButton.dll"

Exontrol's exButton lets you the ability to create and use your own look and eel buttons. The
ButtonBuilder tool helps you to create or change skin file to be displayed in the exButton
control. The ButtonBuilder tool acts like an ActiveX control that can be placed on any
container that supports ActiveX containment. The ButtonBuilder tool provides a button area,
toolbars, a magnify window and a picture properties window. The ButtonBuilder component
contains everything you need to build and create new skin files for your button. The
ButtonBuilder component saves everything that a skin required like, pictures, properties and
attributes for each area defined in the skin. It compresses the information so the size of the
skin file will be as less as possible (also, it supports saving the skin files in uncompressed
format). Use the Exontrol's exImages tool to convert you skin files to BASE64 encoded
string. Even if it is not a requirement the extension of the skin files for Exontrol's exButton
component is ebn.

Use the Skin, FocusSkin methods to assign a skin file or a BASE64 encoded string that
holds a skin file to your button to change the button's visual appearance for a specified
state.

We would recommend taking a look over the following articles:

How to build my own skin file?
How do I assign a skin file to my button?

https://exontrol.com/eximages.jsp

The ButtonBuilder object supports the following properties and methods:

Name Description
Load Loads the button skin from a file.

method ButtonBuilder.Load (FileName as String)
Loads the button skin from a file.

Type Description

FileName as String A String expression that indicates the path to a skin file (
*.ebn)

The skin file must be created using the Exontrol's exButton Builder. The same file can be
passed to Skin or FocusSkin methods as well.

Button events
Tip The /COM object can be placed on a HTML page (with usage of the HTML object tag: <object classid="clsid:...">) using
the class identifier: {91C7CB9E-7B3C-406E-9399-D8F344CABD7B}. The object's program identifier is:
"Exontrol.ButtonBuilder". The /COM object module is: "ExButton.dll"

The exButton control is designed to enhance your Windows-based programs by offering the
look-and-feel of past and present GUI design elements. The Exontrol's Button object
supports the following events:

Name Description
AnchorClick Occurs when an anchor element is clicked.

Click Occurs when the user presses and then releases the left
mouse button over the control.

DblClick Occurs when the user dblclk the left mouse button over an
object.

KeyDown Occurs when the user presses a key while an object has
the focus.

KeyPress Occurs when the user presses and releases an ANSI key.

KeyUp Occurs when the user releases a key while an object has
the focus.

MouseDown Occurs when the user presses a mouse button.
MouseMove Occurs when the user moves the mouse.
MouseUp Occurs when the user releases a mouse button.
StateChange Occurs when the button's state is changing.

C#

VB

private void AnchorClick(object sender,string AnchorID,string Options)
{
}

Private Sub AnchorClick(ByVal sender As System.Object,ByVal AnchorID As
String,ByVal Options As String) Handles AnchorClick
End Sub

C# private void AnchorClick(object sender,
AxEXBUTTONLib._IButtonEvents_AnchorClickEvent e)
{
}

event AnchorClick (AnchorID as String, Options as String)
Occurs when an anchor element is clicked.

Type Description

AnchorID as String A string expression that indicates the identifier of the
anchor

Options as String A string expression that specifies options of the anchor
element.

The control fires the AnchorClick event to notify that the user clicks an anchor element. An
anchor is a piece of text or some other object (for example an image) which marks the
beginning and/or the end of a hypertext link. The <a> element is used to mark that piece of
text (or inline image), and to give its hypertextual relationship to other documents. The
AnchorClick event is fired only if prior clicking the control it shows the hand cursor. For
instance, if the button is disabled, the hand cursor is not shown when hovers the anchor
element, and so the AnchorClick event is not fired. Use the FormatAnchor property to
specify the visual effect for anchor elements. For instance, if the user clicks the anchor
<a1>anchor, the control fires the AnchorClick event, where the AnchorID parameter is
1, and the Options parameter is empty. Also, if the user clicks the anchor <a
1;tooltiptext>anchor, the AnchorID parameter of the AnchorClick event is 1, and the
Options parameter is "tooltiptext". Use the AnchorFromPoint property to retrieve the
identifier of the anchor element from the cursor.

Syntax for AnchorClick event, /NET version, on:

Syntax for AnchorClick event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnAnchorClick(LPCTSTR AnchorID,LPCTSTR Options)
{
}

void __fastcall AnchorClick(TObject *Sender,BSTR AnchorID,BSTR Options)
{
}

procedure AnchorClick(ASender: TObject; AnchorID : WideString;Options :
WideString);
begin
end;

procedure AnchorClick(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_AnchorClickEvent);
begin
end;

begin event AnchorClick(string AnchorID,string Options)
end event AnchorClick

Private Sub AnchorClick(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_AnchorClickEvent) Handles AnchorClick
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

Private Sub AnchorClick(ByVal AnchorID As String,ByVal Options As String)
End Sub

LPARAMETERS AnchorID,Options

PROCEDURE OnAnchorClick(oButton,AnchorID,Options)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="AnchorClick(AnchorID,Options)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function AnchorClick(AnchorID,Options)
End Function
</SCRIPT>

Procedure OnComAnchorClick String llAnchorID String llOptions
 Forward Send OnComAnchorClick llAnchorID llOptions
End_Procedure

METHOD OCX_AnchorClick(AnchorID,Options) CLASS MainDialog
RETURN NIL

void onEvent_AnchorClick(str _AnchorID,str _Options)
{
}

function AnchorClick as v (AnchorID as C,Options as C)
end function

function nativeObject_AnchorClick(AnchorID,Options)
return

Syntax for AnchorClick event, /COM version (others), on:

C#

VB

private void Click(object sender)
{
}

Private Sub Click(ByVal sender As System.Object) Handles Click
End Sub

C#

C++

C++
Builder

Delphi

private void ClickEvent(object sender, EventArgs e)
{
}

void OnClick()
{
}

void __fastcall Click(TObject *Sender)
{
}

procedure Click(ASender: TObject;);
begin
end;

event Click ()
Occurs when the user presses and then releases the left mouse button over the control.

Type Description

Use the Click event to notify your application that user clicks the button. Also, the Click
event is fired if the user releases the SPACE key while the button has the focus. Use the
KeyDown event to avoid changing the button's State while user presses the SPACE key (
handle the KeyDown event and pass 0 to KeyCode parameter). If your Windows scheme
swifts the left button with the right button the Click event is fired when user releases the
right mouse button over the control. Use the Click event to change the button's State when
the button's Mode property is exCustom.

Syntax for Click event, /NET version, on:

Syntax for Click event, /COM version, on:

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure ClickEvent(sender: System.Object; e: System.EventArgs);
begin
end;

begin event Click()
end event Click

Private Sub ClickEvent(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles ClickEvent
End Sub

Private Sub Click()
End Sub

Private Sub Click()
End Sub

LPARAMETERS nop

PROCEDURE OnClick(oButton)
RETURN

Java…

VBSc…

Visual
Data…

<SCRIPT EVENT="Click()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function Click()
End Function
</SCRIPT>

Procedure OnComClick
 Forward Send OnComClick

Syntax for Click event, /COM version (others), on:

X++

XBasic

dBASE

Visual
Objects

End_Procedure

METHOD OCX_Click() CLASS MainDialog
RETURN NIL

void onEvent_Click()
{
}

function Click as v ()
end function

function nativeObject_Click()
return

C#

VB

private void DblClick(object sender,short Shift,int X,int Y)
{
}

Private Sub DblClick(ByVal sender As System.Object,ByVal Shift As Short,ByVal X
As Integer,ByVal Y As Integer) Handles DblClick
End Sub

C#

C++

private void DblClick(object sender,
AxEXBUTTONLib._IButtonEvents_DblClickEvent e)
{
}

void OnDblClick(short Shift,long X,long Y)
{
}

event DblClick (Shift as Integer, X as OLE_XPOS_PIXELS, Y as
OLE_YPOS_PIXELS)
Occurs when the user dblclk the left mouse button over an object.

Type Description

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The DblClick event is fired when the user dbl clicks on the control. Use the DblClick event to
notify your application that user double clicked the button. Use the Click event to notify your
application that the user clicks the button.

Syntax for DblClick event, /NET version, on:

Syntax for DblClick event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void __fastcall DblClick(TObject *Sender,short Shift,int X,int Y)
{
}

procedure DblClick(ASender: TObject; Shift : Smallint;X : Integer;Y : Integer);
begin
end;

procedure DblClick(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_DblClickEvent);
begin
end;

begin event DblClick(integer Shift,long X,long Y)
end event DblClick

Private Sub DblClick(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_DblClickEvent) Handles DblClick
End Sub

Private Sub DblClick(Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub DblClick(ByVal Shift As Integer,ByVal X As Long,ByVal Y As Long)
End Sub

LPARAMETERS Shift,X,Y

PROCEDURE OnDblClick(oButton,Shift,X,Y)
RETURN

Java… <SCRIPT EVENT="DblClick(Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

Syntax for DblClick event, /COM version (others), on:

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT LANGUAGE="VBScript">
Function DblClick(Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComDblClick Short llShift OLE_XPOS_PIXELS llX OLE_YPOS_PIXELS
llY
 Forward Send OnComDblClick llShift llX llY
End_Procedure

METHOD OCX_DblClick(Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_DblClick(int _Shift,int _X,int _Y)
{
}

function DblClick as v (Shift as N,X as OLE::Exontrol.Button.1::OLE_XPOS_PIXELS,Y
as OLE::Exontrol.Button.1::OLE_YPOS_PIXELS)
end function

function nativeObject_DblClick(Shift,X,Y)
return

C#

VB

private void KeyDown(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyDown(ByVal sender As System.Object,ByRef KeyCode As
Short,ByVal Shift As Short) Handles KeyDown
End Sub

C# private void KeyDownEvent(object sender,
AxEXBUTTONLib._IButtonEvents_KeyDownEvent e)

event KeyDown (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user presses a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing
and releasing of a key. You test for a condition by first assigning each result to a temporary
integer variable and then comparing shift to a bit mask. Use the And operator with the shift
argument to test whether the condition is greater than 0, indicating that the modifier was
pressed, as in this example:

ShiftDown = (Shift And 1) > 0
CtrlDown = (Shift And 2) > 0
AltDown = (Shift And 4) > 0
In a procedure, you can test for any combination of conditions, as in this example:
If AltDown And CtrlDown Then

Syntax for KeyDown event, /NET version, on:

Syntax for KeyDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void OnKeyDown(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyDown(TObject *Sender,short * KeyCode,short Shift)
{
}

procedure KeyDown(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyDownEvent(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_KeyDownEvent);
begin
end;

begin event KeyDown(integer KeyCode,integer Shift)
end event KeyDown

Private Sub KeyDownEvent(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_KeyDownEvent) Handles KeyDownEvent
End Sub

Private Sub KeyDown(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyDown(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyDown(oButton,KeyCode,Shift)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="KeyDown(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyDown(KeyCode,Shift)
End Function
</SCRIPT>

Procedure OnComKeyDown Short llKeyCode Short llShift
 Forward Send OnComKeyDown llKeyCode llShift
End_Procedure

METHOD OCX_KeyDown(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyDown(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyDown as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyDown(KeyCode,Shift)
return

Syntax for KeyDown event, /COM version (others), on:

C#

VB

private void KeyPress(object sender,ref short KeyAscii)
{
}

Private Sub KeyPress(ByVal sender As System.Object,ByRef KeyAscii As Short)
Handles KeyPress
End Sub

C#

C++

C++
Builder

private void KeyPressEvent(object sender,
AxEXBUTTONLib._IButtonEvents_KeyPressEvent e)
{
}

void OnKeyPress(short FAR* KeyAscii)
{
}

void __fastcall KeyPress(TObject *Sender,short * KeyAscii)
{
}

event KeyPress (ByRef KeyAscii as Integer)
Occurs when the user presses and releases an ANSI key.

Type Description

KeyAscii as Integer (By Reference) An integer that returns a standard numeric
ANSI keycode.

The KeyPress event lets you immediately test keystrokes for validity or for formatting
characters as they are typed. Changing the value of the keyascii argument changes the
character displayed. Use KeyDown and KeyUp event procedures to handle any keystroke
not recognized by KeyPress, such as function keys, editing keys, navigation keys, and any
combinations of these with keyboard modifiers. Unlike the KeyDown and KeyUp events,
KeyPress does not indicate the physical state of the keyboard; instead, it passes a
character. KeyPress interprets the uppercase and lowercase of each character as
separate key codes and, therefore, as two separate characters.

Syntax for KeyPress event, /NET version, on:

Syntax for KeyPress event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

procedure KeyPress(ASender: TObject; var KeyAscii : Smallint);
begin
end;

procedure KeyPressEvent(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_KeyPressEvent);
begin
end;

begin event KeyPress(integer KeyAscii)
end event KeyPress

Private Sub KeyPressEvent(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_KeyPressEvent) Handles KeyPressEvent
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

Private Sub KeyPress(KeyAscii As Integer)
End Sub

LPARAMETERS KeyAscii

PROCEDURE OnKeyPress(oButton,KeyAscii)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyPress(KeyAscii)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyPress(KeyAscii)
End Function
</SCRIPT>

Syntax for KeyPress event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

Procedure OnComKeyPress Short llKeyAscii
 Forward Send OnComKeyPress llKeyAscii
End_Procedure

METHOD OCX_KeyPress(KeyAscii) CLASS MainDialog
RETURN NIL

void onEvent_KeyPress(COMVariant /*short*/ _KeyAscii)
{
}

function KeyPress as v (KeyAscii as N)
end function

function nativeObject_KeyPress(KeyAscii)
return

C#

VB

private void KeyUp(object sender,ref short KeyCode,short Shift)
{
}

Private Sub KeyUp(ByVal sender As System.Object,ByRef KeyCode As Short,ByVal
Shift As Short) Handles KeyUp
End Sub

C#

C++

C++
Builder

private void KeyUpEvent(object sender,
AxEXBUTTONLib._IButtonEvents_KeyUpEvent e)
{
}

void OnKeyUp(short FAR* KeyCode,short Shift)
{
}

void __fastcall KeyUp(TObject *Sender,short * KeyCode,short Shift)
{

event KeyUp (ByRef KeyCode as Integer, Shift as Integer)
Occurs when the user releases a key while an object has the focus.

Type Description
KeyCode as Integer (By Reference) An integer that represent the key code.

Shift as Integer

An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys at the time of the event. The shift
argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit
1), and the ALT key (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both CTRL and ALT are
pressed, the value of shift is 6.

Use the KeyUp event procedure to respond to the releasing of a key.

Syntax for KeyUp event, /NET version, on:

Syntax for KeyUp event, /COM version, on:

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

}

procedure KeyUp(ASender: TObject; var KeyCode : Smallint;Shift : Smallint);
begin
end;

procedure KeyUpEvent(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_KeyUpEvent);
begin
end;

begin event KeyUp(integer KeyCode,integer Shift)
end event KeyUp

Private Sub KeyUpEvent(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_KeyUpEvent) Handles KeyUpEvent
End Sub

Private Sub KeyUp(KeyCode As Integer,Shift As Integer)
End Sub

Private Sub KeyUp(KeyCode As Integer,ByVal Shift As Integer)
End Sub

LPARAMETERS KeyCode,Shift

PROCEDURE OnKeyUp(oButton,KeyCode,Shift)
RETURN

Java…

VBSc…

<SCRIPT EVENT="KeyUp(KeyCode,Shift)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function KeyUp(KeyCode,Shift)
End Function

Syntax for KeyUp event, /COM version (others), on:

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

</SCRIPT>

Procedure OnComKeyUp Short llKeyCode Short llShift
 Forward Send OnComKeyUp llKeyCode llShift
End_Procedure

METHOD OCX_KeyUp(KeyCode,Shift) CLASS MainDialog
RETURN NIL

void onEvent_KeyUp(COMVariant /*short*/ _KeyCode,int _Shift)
{
}

function KeyUp as v (KeyCode as N,Shift as N)
end function

function nativeObject_KeyUp(KeyCode,Shift)
return

C#

VB

private void MouseDownEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseDownEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseDownEvent
End Sub

C# private void MouseDownEvent(object sender,
AxEXBUTTONLib._IButtonEvents_MouseDownEvent e)
{
}

event MouseDown (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user presses a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The X value is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The Y value is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseDown event, /NET version, on:

Syntax for MouseDown event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseDown(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseDown(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseDown(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseDownEvent(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_MouseDownEvent);
begin
end;

begin event MouseDown(integer Button,integer Shift,long X,long Y)
end event MouseDown

Private Sub MouseDownEvent(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_MouseDownEvent) Handles MouseDownEvent
End Sub

Private Sub MouseDown(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseDown(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseDown(oButton,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseDown(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseDown(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseDown Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseDown llButton llShift llX llY
End_Procedure

METHOD OCX_MouseDown(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseDown(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseDown as v (Button as N,Shift as N,X as
OLE::Exontrol.Button.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Button.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseDown(Button,Shift,X,Y)
return

Syntax for MouseDown event, /COM version (others), on:

C#

VB

private void MouseMoveEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseMoveEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseMoveEvent
End Sub

C#

C++

private void MouseMoveEvent(object sender,
AxEXBUTTONLib._IButtonEvents_MouseMoveEvent e)
{
}

void OnMouseMove(short Button,short Shift,long X,long Y)

event MouseMove (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user moves the mouse.

Type Description

Button as Integer An integer that corresponds to the state of the mouse
buttons in which a bit is set if the button is down.

Shift as Integer An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates

The MouseMove event is generated continually as the mouse pointer moves across objects.
Unless another object has captured the mouse, an object recognizes a MouseMove event
whenever the mouse position is within its margins.

Syntax for MouseMove event, /NET version, on:

Syntax for MouseMove event, /COM version, on:

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

{
}

void __fastcall MouseMove(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseMove(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseMoveEvent(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_MouseMoveEvent);
begin
end;

begin event MouseMove(integer Button,integer Shift,long X,long Y)
end event MouseMove

Private Sub MouseMoveEvent(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_MouseMoveEvent) Handles MouseMoveEvent
End Sub

Private Sub MouseMove(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseMove(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseMove(oButton,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseMove(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseMove(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseMove Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseMove llButton llShift llX llY
End_Procedure

METHOD OCX_MouseMove(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseMove(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseMove as v (Button as N,Shift as N,X as
OLE::Exontrol.Button.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Button.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseMove(Button,Shift,X,Y)
return

Syntax for MouseMove event, /COM version (others), on:

C#

VB

private void MouseUpEvent(object sender,short Button,short Shift,int X,int Y)
{
}

Private Sub MouseUpEvent(ByVal sender As System.Object,ByVal Button As
Short,ByVal Shift As Short,ByVal X As Integer,ByVal Y As Integer) Handles
MouseUpEvent
End Sub

C# private void MouseUpEvent(object sender,
AxEXBUTTONLib._IButtonEvents_MouseUpEvent e)
{
}

event MouseUp (Button as Integer, Shift as Integer, X as
OLE_XPOS_PIXELS, Y as OLE_YPOS_PIXELS)
Occurs when the user releases a mouse button.

Type Description

Button as Integer An integer that identifies the button that was pressed to
cause the event.

Shift as Integer
An integer that corresponds to the state of the SHIFT,
CTRL, and ALT keys when the button specified in the
button argument is pressed or released.

X as OLE_XPOS_PIXELS
A single that specifies the current X location of the mouse
pointer. The x values is always expressed in container
coordinates.

Y as OLE_YPOS_PIXELS
A single that specifies the current Y location of the mouse
pointer. The y values is always expressed in container
coordinates.

Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
mouse button is pressed or released. Unlike the Click and DblClick events, MouseDown and
MouseUp events lets you distinguish between the left, right, and middle mouse buttons. You
can also write code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT
keyboard modifiers.

Syntax for MouseUp event, /NET version, on:

Syntax for MouseUp event, /COM version, on:

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

void OnMouseUp(short Button,short Shift,long X,long Y)
{
}

void __fastcall MouseUp(TObject *Sender,short Button,short Shift,int X,int Y)
{
}

procedure MouseUp(ASender: TObject; Button : Smallint;Shift : Smallint;X :
Integer;Y : Integer);
begin
end;

procedure MouseUpEvent(sender: System.Object; e:
AxEXBUTTONLib._IButtonEvents_MouseUpEvent);
begin
end;

begin event MouseUp(integer Button,integer Shift,long X,long Y)
end event MouseUp

Private Sub MouseUpEvent(ByVal sender As System.Object, ByVal e As
AxEXBUTTONLib._IButtonEvents_MouseUpEvent) Handles MouseUpEvent
End Sub

Private Sub MouseUp(Button As Integer,Shift As Integer,X As Single,Y As Single)
End Sub

Private Sub MouseUp(ByVal Button As Integer,ByVal Shift As Integer,ByVal X As
Long,ByVal Y As Long)
End Sub

LPARAMETERS Button,Shift,X,Y

PROCEDURE OnMouseUp(oButton,Button,Shift,X,Y)
RETURN

Java…

VBSc…

Visual
Data…

X++

XBasic

dBASE

Visual
Objects

<SCRIPT EVENT="MouseUp(Button,Shift,X,Y)" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function MouseUp(Button,Shift,X,Y)
End Function
</SCRIPT>

Procedure OnComMouseUp Short llButton Short llShift OLE_XPOS_PIXELS llX
OLE_YPOS_PIXELS llY
 Forward Send OnComMouseUp llButton llShift llX llY
End_Procedure

METHOD OCX_MouseUp(Button,Shift,X,Y) CLASS MainDialog
RETURN NIL

void onEvent_MouseUp(int _Button,int _Shift,int _X,int _Y)
{
}

function MouseUp as v (Button as N,Shift as N,X as
OLE::Exontrol.Button.1::OLE_XPOS_PIXELS,Y as
OLE::Exontrol.Button.1::OLE_YPOS_PIXELS)
end function

function nativeObject_MouseUp(Button,Shift,X,Y)
return

Syntax for MouseUp event, /COM version (others), on:

C#

VB

private void StateChange(object sender)
{
}

Private Sub StateChange(ByVal sender As System.Object) Handles StateChange
End Sub

C#

C++

C++
Builder

Delphi

Delphi 8
(.NET
only)

private void StateChange(object sender, EventArgs e)
{
}

void OnStateChange()
{
}

void __fastcall StateChange(TObject *Sender)
{
}

procedure StateChange(ASender: TObject;);
begin
end;

procedure StateChange(sender: System.Object; e: System.EventArgs);
begin
end;

event StateChange ()
Occurs when the button's state is changing.

Type Description

Use the StateChange event to notify your application that the button changes its state. The
State property determines the button's state. Use the AllowHotState property to allow hot
state for your button. Use the Skin method to assign a skin to your button.

Syntax for StateChange event, /NET version, on:

Syntax for StateChange event, /COM version, on:

Powe…

VB.NET

VB6

VBA

VFP

Xbas…

begin event StateChange()
end event StateChange

Private Sub StateChange(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles StateChange
End Sub

Private Sub StateChange()
End Sub

Private Sub StateChange()
End Sub

LPARAMETERS nop

PROCEDURE OnStateChange(oButton)
RETURN

Java…

VBSc…

Visual
Data…

X++

Visual
Objects

<SCRIPT EVENT="StateChange()" LANGUAGE="JScript">
</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
Function StateChange()
End Function
</SCRIPT>

Procedure OnComStateChange
 Forward Send OnComStateChange
End_Procedure

METHOD OCX_StateChange() CLASS MainDialog
RETURN NIL

void onEvent_StateChange()
{

Syntax for StateChange event, /COM version (others), on:

XBasic

dBASE

}

function StateChange as v ()
end function

function nativeObject_StateChange()
return

How to replace my old VB buttons with this new button?

Actually, replacing old VB Command buttons with the Exontrol's exButton component is just
like replacing a string with another.

You have the following options to replace the VB Command objects with the Exontrol's
exButton component.

A)

Make the first step to add the ExButton to the VB project like any control with the
project open (Ctrl+T), save and close it.

Do the "VB.Command" search and replace in each frm file.

B)

Open the Project1.vbp and add a reference to the exbutton.dll by adding the line
~Object={65D9132C-B295-42A0-8421-B8B1DA27C5CE}#1.0#0; ExButton.dll~ Do
not include the ~ characters.

Open the Form1.frm and add the ~Object = "{65D9132C-B295-42A0-8421-
B8B1DA27C5CE}#1.0#0"; "ExButton.dll"~ reference to the form just before 'Begin
VB.Form'

Replace all ~VB.CommandButton~ with the ~EXBUTTONLibCtl.Button~ and save
the form1.frm file.

Now, the idea to replace the old VB button with the new button is to use a tool that's able to
find and replace strings. For instance if you have multiple vbp files adding the object
reference to the files could be like follows. Look for a property in the .vbp file that could be
located in all your vbp files, like VersionCompanyName (or whatever) and do
Replace('VersionCompanyName="YourCompanyName"',
'VersionCompanyName="YourCompanyName"\r\nObject={65D9132C-B295-42A0-8421-
B8B1DA27C5CE}#1.0#0; ExButton.dll'. This way you actually added the reference to the
project file. The same for the file reference in the frm files where the 'Begin VB.Form' could
be located.

How to build my own skin file?

The Exontrol ExButton library installs the ButtonBuilder component (
"Exontrol.ButtonBuilder" is the control's identifier) that helps you to build new skin files for
your buttons. Before showing how you can build your own skin file, we have to review for a
bit how the ButtonBuilder can be used. If you already know how to use the ButtonBuilder
component click here to see how to start your own skin file (visual appearance for a
specified state of the button).

If you are a VB developer, click the 'Toolbox' panel, and choose the 'Components' from
the panel's context menu. Once that you check and apply the 'ExButton 1.0 Control
Library' from the opened dialog, your 'Toolbox' panel includes two new components:
Button and ButtonBuilder .
If you are a VC developer, select the dialog where you want to insert the component,
select 'Insert ActiveX Control' from its context menu, and dbl click the 'ExButton
ActiveX Control' item in the opened dialog.

Once that you have inserted a ButtonBuilder component to a form or dialog, you are ready
to build new skin files for your buttons. Of course, you can use the ButtonBuilder component
to load and change already saved skin files. When the form that contains a ButtonBuilder
component is opened, the ButtonBuilder component automatically shows the 'Zoom' and
'Properties' panels. The 'Zoom' panel helps user to magnify different portions of the screen.
The 'Properties' panel contains information like, background color, background picture for
the selected object.

The skin method, in it's simplest form, uses a single graphic file assigned to the client area
of the button. By using a collection of objects laid over the graphic, it is possible to define
which sections of the graphic will be used as borders, corners and other possible elements,
fixing them to their proper position regardless of the size of the button. The skin file is
organized as a hierarchical list of objects. Each object can display a portion of picture with
attributes like tile, stretch or transparent or a background color. The position for each child
object is relative to its parent, and can be aligned to any side of the parent's client area.
Important to notice is that the position of the objects can use simple arithmetic operation
like 10 + 50% that means 10 pixels plus a half of parent's size, or 100% that means 100%
of the parent size.

 The ButtonBuilder's toolbox contains the following buttons:

 Action Description

 New file
Creates an empty skin file. The builder automatically shares
the skin area in multiple pieces that identifies the client area
of the skin and the corners.

Open a file Opens a file. The file should be saved previously using the
Save button. By default, the builder loads *.ebn files.

Save a file

Saves the skin to a file. The builder saves everything that's
required for the skin. Save As , if you are pressing the
SHIFT key while clicking the 'Save' button you can choose
a new file where to save the skin. By default, the builder
compresses the files, so you can press CTRL key to save
files uncompressed (the message ' Save (uncompressed)
as 'should appear on the save file dialog).

Properties

A check button that indicates whether the 'Properties' panel
is visible or hidden. The 'Properties' panel holds information
about background of the selected object. Also, the the
'Properties' panel contains the list of pictures used by the
skin. Details here.
A check button that specifies whether the 'Zoom' panel is
visible or hidden. You can use the 'Zoom' panel to magnify
different portions of screen. In order to visualize a specified

Zoom portion of the screen you can press "CTRL" key while
moving the mouse, or you can click into the 'Zoom' window
and drag the focused rectangle to the area being magnified.
You can magnify the are by keeping the (SHIFT +)CTRL
key and clicking the Zoom Window.

Test

Shows the current EBN object to a separate window.
Opens a new window where you can see running the
exButton using the State exNormal as defined by the skin.
Keep the CTRL key to assign a new skin for the exPushed
state.

Draw grid lines
A check button that indicates whether the ButtonBuilder
draws the grid lines around the objects in the skin. The grid
lines are not painted in the Test window.

Alignment

A set of six radio buttons that indicates the object's
alignment relative to its parent. The list of radio buttons in
their listed order is: None, Left, Right, Client, Top and
Bottom. For instance, if an object has the Left Alignment, it
means that the object shares the left area of the parent with
itself. The object's coordinates are defined in the edit
controls labeled: X, Y, CX and CY. The edit controls that
handle coordinates are enabled based on the object's
alignment. For instance, if the object's alignment is left, only
the CX coordinate will be enabled, or if the object's
alignment is None, then all coordinates are enabled. The
coordinates are relative to the parent object, and they may
contain arithmetic expressions, and % sign (percent
indicates that the object is % from the size of its parent) as
well.

Colorable Object

The object is colorable, which means that the EBN color is
applied to this part when the color is applied to the entire
EBN object. For instance, at runtime the identifier
0x1FF0000 applies blue color to all parts that compose the
EBN object, including the selected object.

Not-Colorable Object

The object is not-colorable, which means that the EBN color
is not applied to this part when the color is applied to the
entire EBN object. For instance, at runtime the identifier
0x1FF0000 applies blue color to all parts that compose the
EBN object, excluding the selected object.
Creates a new child object. The newly created object is
child of the selected object. By default, the newly created
object has no picture or color associated to it. You have to

Insert Object define the object's background using the 'Properties' panel.
You can also, insert a new child object while ButtonBuilder
is focused by pressing the 'Insert' key.

Remove Object

Removes the selected object. Also, you can remove the
selected object by pressing the 'Delete' key. Note, that the
client area of the skin (the area that displays the 'Caption'
string) is not allowed to be removed.

Load BASE64 Loads from the clipboard a BASE64 string that encodes an
EBN object.

Save BASE64 Generates the BASE64 string that encodes the current EBN
object, and copies it in the clipboard as text.

Undo Restores the last operation.
Redo Reverse of the Undo operation.

Notes:

the selected object is always marked using markers.
any change in the 'Properties' panel will be reflected in the selected object.
use 'Up' key to select the parent of the selected object, while the ButtonBuilder is
focused.
use the 'Down' key to select the first child of the selected object, while the
ButtonBuilder is focused.
use the 'Left' or 'Right' key to move through the objects that have the same parent as
selected object.
you can change the order of the objects (that have the same parent) using
combination of CTRL + PgUp or CTRL + PgDn key.

The 'Properties' panel is a resizable window that's visible only if the button is pressed.
The caption of its window is 'Background'. The 'Properties' panel is always updated when
the selected object is changed. The 'Properties' panel defines the list of pictures used by
the skin. The 'Properties' panel looks like follows:

Use the Picture menu to insert, delete a picture object from the skin file. Note that all picture
files are saved to the skin file (ebn file), no matter if they are used or not. The
ButtonBuilder compresses the file, so even if you are using a bitmap file or a gif file, the file
of the skin will be compressed (use the CTRL key to save the file as uncompressed). The
'Properties''s toolbox contains the following buttons (in their order):

 Action Description

Tile, Stretch, Horizontal
or Vertical Stretch

A set of two radio buttons that defines the way how the
picture is displayed on the selected object: tiled, stretch,
horizontal stretch or vertical stretch.

Transparent

A set of three radio buttons that defines the picture's
transparency. If the first button is pressed, the picture is
opaque, so no transparent colors are used. If the second
button is pressed, the picture is transparent. No picture or
background is applied to the selected object. If the third
button is pressed, the last two buttons (the black buttons)
define the transparent color from and transparent color to.
In order to select a new transparent color, you have to click
on the one of the last two buttons and drag to the desired
color. Once that you have selected a transparency color,
you have to presses the button again to apply the
transparent color to the selected object.
Defines a set of predefined colors. The X button clears the
background color of the selected object. The bottom-right

Colors
button (bellow to X button), helps user to add a custom
color. How? Click the button and drag to desired color.
Once that you have selected a custom color, you can press
the button again and the builder will apply the selected color
to the selected object.

Picture coordinates The X, Y, CX, CY edit controls define the coordinates of the
picture on the background of the selected object.

Now, that we are ready to go, we can start building the skin for the button. If you have
already a skin file check the How to assign a skin file to my button? Between steps you can
save the skin file using the Save button .

1. Choosing the picture files that we are using to build our button. You can have a BMP
file, a GIF file or a JPEG file (or any picture file that your Windows recognize), though
we prefer the BMP file since it holds information about the picture without losing colors

by compressing. In our case we choose this one (you can save it as a BMP file).

Here's the same picture but this time it is zoomed:
2. Loading the picture file using the Background panel, by choosing the Picture\ Add

New item menu. Please notice that the selected object in the skin is the skin's client
area (the area where the 'Caption' string is painted, so the picture will be applied as
tile on the skin's client area. In the same time, we can specify the skin's client area by
changing the coordinates of the picture even by clicking the slider buttons on the
coordinates panel, or by dragging the selected area in the picture. We have two
options to avoid displaying that picture on the skin's client area. One by clicking the
None item in the pictures list, and this way we ensure that the skin's client area ha no
picture associated, or clicking the Transparent button . In this case, the skin's client
area have a picture associated but it is not painted. At this point you can download the
skin file here.

3. Defining the corners and margins for the button. By default, the builder creates
few objects that specify the corners and margins of the button. The size for these
objects can be changed any time. By default, the size of the corners is 4 (pixels). In
our case if we take a closer look using the Zoom window, at the picture we have
chosen we will see that 4 pixels are quite enough for margins and corners, but we will

change the margins as follows: the left, right and top margins set to 2 pixels, and the
bottom margin set to 3 pixels. This way we will ensure that our corners and borders
are correct defined. At this point you can download the skin file here.

4. Defining the look and feel for each object in the skin. Now that all parts in our skin
are well defined, we will take each part that's displayed and we will define how it will
look like. For instance, we will define the left-top corner (the one with a red pixel), but
the same thing can be done for all objects in the skin. So, first we have to select the
object by clicking inside the object until builder marks the selected object. If your object
is too small press the CTRL key and the area will be zoomed in the Zoom window (
also the cursor will be marked by a cross), or use the arrow keys until you get the
desired object. After you selected the object the Zoom window automatically magnifies
the object in the Zoom window for a better view. If you feel that grid lines that's painted
to mark the objects in the skin, just press the Draw grid lines button . Go to
Background panel and click the normal.bmp item. This way you assign a picture to the
selected object. Chose the way how the picture is displayed: tile, stretch, transparent
and adjusts the picture coordinates until you get the desired image in the selected
object. If your object require transparent areas you need to press the Transparency
button and choose the taransparent color "from" and "two" using the two buttons
right to the Transparency button (click and drag the cursor over the color you want to
select, you can drag the cursor directly to the zoom window where the screen is
magnified). After you select the transparency colors the builder considers the colors
being the range of transparency used. Click once again one of these two buttons, and
the transparency will be applied to the selected object. At this point you can download
the skin file here.

5. After all objects were defined click the Save button and your skin is ready to be
used. At this point you can download the skin file here. How to assign a skin file to my
button?

How do I assign a skin file to my button?

We assume that you have already a skin file (else you can search for *.ebn files in the
samples folder of the Exontrol's ExButton).

There are two options to load your skin file to the button using the Skin or FocusSkin
method of the ExButton:

converting the skin file to a BASE64 encoded string.
loading directly the file

Converting the skin file to a BASE64 encoded string is possible using the Exontrol's
ExImages tool. It is free to use, so you have to download it and to run the ExImages.exe
file. The following screen shot shows you the mainframe from the Exontrol's ExImages tool:

Open a Windows Explorer, locate your skin file and drag the file over the area "Drag here
a file such of ". The tool generates the BASE64 encoded string in two formats: VB or
Template.

The VB format shows like follows:

https://exontrol.com/eximages.jsp

Dim s as String
s =
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIX
QKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+
ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMy
ERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5G
eRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGr
cEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7
AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB
2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghg
mYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJB
YSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4
Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLg
XiIDISli+BonoOtEGkKh"
s = s +
"WhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjW
LJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgs
UpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8
S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5
bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnM
Qw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRd
F8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M
4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCs
ZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYT
onw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/
CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D
8T74A/DfGePEfo/h/jvHoP8T"
s = s +
"44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkA
wIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQG
UBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiD
IEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMij
BIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCC
QDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKA
QTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYm
Q9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvB
qiYGmAgPYjw4j5BuGYfg3hOATEcHEJwWRhg5HOCQdAnBpimDsE4XI3QdCnEIO0TwMxf
BumqPoHwRxmD3E+DMcQfQnjZHyD8c58xPjUAVKYHQDQghoCKAQUIVAPTnEyPUHohx

and it can be copied and pasted to your VB, VC code.

The Template form looks like:

Template:
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIX
QKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+
ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMy
ERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5G
eRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGr
cEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7
AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB
2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghg
mYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJB
YSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4
Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLg
XiIDISli+BonoOtEGkKhWhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqK
oyiuKxrAqPuCisSpGjWLJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2ky
M5sjsRpOjSLUIFaNRtgsUpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6O
punuNpwjybwrlacY9m8S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnC
bBHA2RJxAwUwSkCb5bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMk
MLpHnGGoiG0OAMnMQw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6c
xVgYbQ5eSUxUlWNRdF8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj
8cZcDcLZXHSXZ3D2M4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4Fx
jDyA4H8Eoxw5CcEeCsZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9Quhv
CmNceonRDhdGwPYTonw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB
4L7zB9AeDOKUc4+g/CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeY
fRPhPiiPsToGR4B0E6D8T74A/DfGePEfo/h/jvHoP8T44x/iACgAYAQQAEANAAOAHgBQ/D
PGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkAwIIaAZgHBBFwD0AwoQCAdEIDAPwBh
dAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQGUBgIYOA2gNDCMQGghwoDeA6MMT

and it can be used in Template pages. Also, the tool displays the length of the string that's
required to hold the file you dragged. Important to notice is that the ExImages tool
compresses the file before generating the BASE64 encoded string, but converting it to a
BASE64 string it means that the size of the string will be with 1/4 greater than compressed
file. The BASE64 encoded strings are useful to hold your icons, pictures, skins in string
instead adding all kind of files to your application.

So, after we get the BASE64 encoded string all that you need to do is to pass the s
variable to Skin, or FocusSkin method like in the following sample:

With Button1

 Dim s As String
 s =
"gBFLBCJwBAEHhEJAEGg4BV4Fg6AABACAxWgKBADQKAAyDIKsEQGGIZRhhGIwAgaFIX
QKMUIxVAcLQxCgCYRhYABRiUAoJkjkMYhSDOFgzARHcxRPDgARrDyZQAkOQ5FDGFo+
ShFQxTRC9CQpHaEYqkeA3fgmTYXTxJM7yfQVFxlCwTIwFGQqJgmVpPABYERyWKoSzJMy
ERpGCyIDqqbJXVxFYj3DCscw/KIYaqlGS5Ni+IZ2TLNMz4BAdEQfKSEaAgOToboaE5GB5G
eRRbT1HYtKDEcQhepIbpaH5YQjkMBibBNZ4pAavcroeK7FqeI5ua7ach5fisB5EAARYREGr
cEqPGZ5ShjGJ1MK0CxzIwDboBPbNdwXP56cIAAx8IJbD0GJQGoIQ1jgGAbhmTZXGsLZ7
AsTpKDEVolG0QAaJyA4bleZgCiEJpjHmSJaGENgLgwRpTgUCAhAMEIElCSZ+EUAxkCQKB
2huJR0BgRQPkAPZuFOCpSGgewckOUACBSBYhFgXgagYYZIGIHoGmGeB2CCCJiCiFghg
mYhIiIJoFmEEZtEwAAilKFB9JWUooi2DRjHiWg4g6Y4onYOYPmOSQCD6EBkEkDhGhCJIJB
YSYRmOCJIFKCxhmMBIuCwZQpFIU4VGWCReFqFYlkkZjpGWaYGGCGJlnmFhihmJhJh4F4
Hg+eY0kULILFmPhxhwJwplYdIdmcOZmHaHongmbh+h8aAJnKAofmgOgGHKGxPnmLg
XiIDISli+BonoOtEGkKh"
 s = s +
"WhGJZpEoYoWiYaZKG6HomioCh2iGJ5pAoIoKgUaIDDCOgvCqKoyiuKxrAqPuCisSpGjW
LJrGqZo4i6ax6naOoviuSo2iaBRmkmNJQC+DALB6SYyCyKw2kyM5sjsRpOjSLUIFaNRtgs
UpajWbY7GaSowlAOguG0NQMCMEpkjmLhbh6ao6G6S4im6OpunuNpwjybwrlacY9m8
S5inaOZuAsFJ/DYDBjCMAJAjAHAPAaQRwgwEwKkGcI8CcDJDnCbBHA2RJxAwUwSkCb5
bgifw3AyMwzByR4xlwfwikgchMgMJpInIfIXCiSpyiyNwpkucpMkMLpHnGGoiG0OAMnM
Qw4k6M4cm8PpPHR2BCk+dA9AcRJRnQbQnEWUp0g0MxKk6cxVgYbQ5eSUxUlWNRd
F8WpWHWTRjF6Vp1n0dxglidgthcYZZnYTYjGaVZ1BoIJoDWTYNj8cZcDcLZXHSXZ3D2M
4dovQ3gbG8P0Xw8ANjnAKL8eAfAHDlFsM0U4WRbBtHiFwM4FxjDyA4H8Eoxw5CcEeCs
ZI8huDPBiM0eQ/B3g1GeHMTgbwIB/eYPkX40h6D9BuFEao9QuhvCmNceonRDhdGwPYT
onw2jZDuB0V4cxtj1A67AOInA+j/EGOAPAXgXiJHGPgPwTxGjlDyB4L7zB9AeDOKUc4+g/
CPEKNETw5wcjPHYPsPw1xcjvH2N8B4ux4j8A+CcYo8h+gfB+NUeYfRPhPiiPsToGR4B0E6D
8T74A/DfGePEfo/h/jvHoP8T"
 s = s +
"44x/iACgAYAQQAEANAAOAHgBQ/DPGQHUBwoR4gDDBA4QQEAnAJCCFgEYBRwCkA
wIIaAZgHBBFwD0AwoQCAdEIDAPwBhdAxHkDsA4ZATiFBgKICoQhsBZAWOELgMRCjQG
UBgIYOA2gNDCMQGghwoDeA6MMTAVQEiHDQO0D4MUXDEBQIkCI4gaBJEQLEFwJAiD
IEqBMMQhAniKCiDoFQRQMCrAoOIBYowPhDF4HcYouBdgXBEPQMIjAIiOBeMYLAxQMij
BIGcRoURTA2CMIg144w+BtEWNENAeBHgRikGMXgdqgjuB6EcbA8wPjjHIIAR40gDBCC
QDkBoIBSBEEKJEGQHgdTVHsDwQ4lBHiSBkEIJISQsgpBKOQTgmRJDSDUEwJIuQegnDKA
QTglApB+CiMpboI0kj0A+HIUwVRlCpCyCscodBYiVFkM4LASwkhlBaGUYgtxLhSG0F4JYm
Q9guHKEujggxqB6GYDkRYMQTA0GSJkCYLgxjMGyJUGYpgyDPE0FMIwagmgJFaDQcwvB

The sample shows how to apply a skin to the exNormal state of the button. Using the same
way you can assign skin for any state of the button, and you can assign skins for states
that you are going to use, not for all. For instance, if you have AllowHotState property is
False, the exHot state should not be assigned (because it is never used). Also, if you have
UseFocusSkin property on True, instead calling the Skin method you should call FocusSkin
method. Also, if multiple skins are applied in the same time we would recommend using the
the BeginUpdate and EndUpdate methods. You will find a simple sample bellow this page.

Loading directly the file is possible by passing the path to the skin file to the Skin or
FocusSkin method like in the following sample:

With Button1
 .Skin exNormal, "D:\Exontrol\ExButton\project\skins\XPSilver\normal.ebn"
End With

Use the BeginUpdate and EndUpdate methods to avoid painting the button while adding
skins for each state of the button like in the following sample:

With Button1
 .BeginUpdate

 Dim strPath As String
 strPath = "D:\Exontrol\ExButton\sample\VB\Builder\Predefined\XPSilver\"

 .UseFocusSkin = True
 .Skin exNormal, strPath + "normal.ebn"
 .Skin exHot, strPath + "hot.ebn"
 .Skin exPushed, strPath + "pushed.ebn"
 .FocusSkin exNormal, strPath + "focus.ebn"

 .EndUpdate
End With

	Information
	How to get support?
	Button
	Alignment property
	AllowHotState property
	AnchorFromPoint property (readonly)
	AttachTemplate method
	BackColor property
	BackgroundExt property
	BackgroundExtValue property
	BeginUpdate method
	BorderHeight property
	BorderWidth property
	Caption property
	Debug property
	Enabled property
	EndUpdate method
	EventParam property
	ExecuteTemplate method
	Focusable property
	FocusSkin method
	FocusSkinV method
	Font property
	ForeColor property
	ForeColorState property
	FormatAnchor property
	HFit property
	HTMLPicture property
	hWnd property (readonly)
	Image property
	ImageAlignment property
	Images method
	ImageSize property
	ImageVAlignment property
	IncClientState property
	Mode property
	MouseIcon property
	MousePointer property
	Picture property
	PictureDisplay property
	Refresh method
	RenderType property
	ReplaceIcon method
	Rotate property
	ShowFocusRect property
	Skin method
	SkinV method
	State property
	Style property
	Template property
	TemplateDef property
	TemplatePut method
	ToolTipDelay property
	ToolTipFont property
	ToolTipMargin property
	ToolTipPopDelay property
	ToolTipText property
	ToolTipTitle property
	ToolTipWidth property
	UseFocusSkin property
	UserData property
	UseTransparency property
	VAlignment property
	Version property
	VFit property
	WordWrap property

	ButtonBuilder
	Load method

	Button events
	AnchorClick event
	Click event
	DblClick event
	KeyDown event
	KeyPress event
	KeyUp event
	MouseDown event
	MouseMove event
	MouseUp event
	StateChange event

